A 50-year-old, previously healthy man presents to the emergency department with 2 days of worsening dyspnea. He had fever, cough, and fatigue during the week before presentation. He appears acutely ill. The body temperature is 39.5°C (103°F), heart rate 110 beats per minute, respiratory rate 24 breaths per minute, and blood pressure 130/60 mm Hg. The oxygen saturation is 87% while the patient is breathing ambient air. The white-cell count is 7300 per microliter with lymphopenia. Chest radiography shows patchy bilateral opacities in the lung parenchyma. A reverse-transcriptase–polymerase-chain-reaction assay detects the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in a nasopharyngeal swab. How would you evaluate and manage this case?
The new england journal of medicine

or less, a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen ($P_{aO_2}/F_{iO_2}$) of less than 300 mm Hg, or infiltrates in more than 50% of the lung field within 24 to 48 hours from the onset of symptoms. In a large cohort of patients with Covid-19, 81% had mild disease, 14% had severe disease, and 5% became critically ill with organ failure; the mortality in the critically ill group was 49%. The majority of critically ill patients with Covid-19 receive prolonged mechanical ventilation.

People with chronic health conditions such as cardiovascular disease, diabetes mellitus, and obesity are more likely to become critically ill from Covid-19. The incidence of critical illness is also higher among men than among women and higher among persons older than 65 years of age than among younger persons. However, healthy persons of any age can become critically ill with Covid-19. A hallmark of the Covid-19 pandemic is the sudden appearance of an unprecedented number of critically ill patients in a small geographic area. This can overwhelm local health care resources, resulting in shortages of trained staff, ventilators, renal-replacement therapy, and intensive care unit beds.

### KEY CLINICAL POINTS

**EVALUATION AND MANAGEMENT OF SEVERE COVID-19**

- Patients with severe coronavirus disease 2019 (Covid-19) may become critically ill with acute respiratory distress syndrome that typically begins approximately 1 week after the onset of symptoms.
- Deciding when a patient with severe Covid-19 should receive endotracheal intubation is an essential component of care.
- After intubation, patients should receive lung-protective ventilation with plateau pressure less than or equal to 30 cm of water and with tidal volumes based on the patient’s height.
- Prone positioning is a potential treatment strategy for refractory hypoxemia.
- Thrombosis and renal failure are well-recognized complications of severe Covid-19.
- Data are needed from randomized trials to inform the benefits and risks of antiviral or immunomodulatory therapies for severe Covid-19; as of mid-May 2020, no agents had been approved by the Food and Drug Administration for treatment of these patients.
- Preliminary data from a randomized, placebo-controlled trial involving patients with severe Covid-19 suggest that the investigational antiviral remdesivir shortens time to recovery.

### STRATEGIES

#### INITIAL STEPS

Patients with severe Covid-19 should be hospitalized for careful monitoring. Given the high risk of nosocomial spread, strict infection-control procedures are needed at all times. If able, the patient should wear a surgical mask to limit the dispersion of infectious droplets. Clinicians should don appropriate personal protective equipment (PPE) as defined by their local infection-prevention program, using particular caution when performing procedures that may increase the generation of infectious aerosols. These include endotracheal intubation, extubation, bronchoscopy, airway suctioning, nebulization of medication, the use of high-flow nasal cannulae, noninvasive ventilation, and manual ventilation with a bag-mask device. Current guidelines recommend that clinicians wear gowns, gloves, N95 masks, and eye protection at the least and place patients in negative-pressure rooms whenever possible during aerosol-generating procedures.

Patients with severe Covid-19 have a substantial risk of prolonged critical illness and death. Therefore, at the earliest opportunity, clinicians should partner with patients by reviewing advanced directives, identifying surrogate medical decision makers, and establishing appropriate goals of care. Because infection-control measures during the pandemic may prevent families from visiting seriously ill patients, care teams should develop plans to communicate with patients’ families and surrogate decision makers.

### BASICS OF RESPIRATORY CARE

Patients should be monitored carefully by direct observation and pulse oximetry. Oxygen should be supplemented by the use of a nasal cannula or Venturi mask to keep the oxygen saturation of hemoglobin between 90 and 96%. Deciding whether or not to intubate is a critical aspect of caring for seriously ill patients with Covid-19. Clinicians must weigh the risks of premature intubation against the risk of sudden respiratory
### Figure 1. Timeline of Symptoms of Severe Coronavirus Disease 2019 (Covid-19).

The left border of the colored boxes shows the median time to onset of symptoms and complications. There is wide variation in the duration of symptoms and complications. Adapted from Zhou et al. and the Centers for Disease Control and Prevention.

<table>
<thead>
<tr>
<th>Incubation Period</th>
<th>Fever</th>
<th>Cough</th>
<th>Fatigue</th>
<th>Anorexia</th>
<th>Myalgias</th>
<th>Diarrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Median Days from Infection to Onset of Symptoms**

**Onset of Symptoms**

-5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

- **Severe illness in 14% of symptomatic patients**
- **Critical illness in 5% of symptomatic patients**
- **Dyspnea in 40% of symptomatic patients**

### Figure 2. Radiographic and Ultrasonographic Findings of Severe Covid-19.

- **Panel A**: Chest radiography shows bilateral ground-glass opacities and consolidations.
- **Panel B**: Computed tomography (CT) of the chest shows bilateral ground-glass opacities.
- **Panel C**: Thoracic ultrasonography shows B lines (arrow); this image is courtesy of Dr. Christopher Parkhurst.
- **Panel D**: CT of the head shows left-greater-than-right cerebral infarcts (arrow).

Chest radiography (Panel A) shows bilateral ground-glass opacities and consolidations. Computed tomography (CT) of the chest (Panel B) shows bilateral ground-glass opacities. Thoracic ultrasonography (Panel C) shows B lines (arrow); this image is courtesy of Dr. Christopher Parkhurst. CT of the head (Panel D) shows left-greater-than-right cerebral infarcts (arrow).
A  Determination of Need for Endotracheal Intubation for Covid-19–Related Respiratory Failure

Possible Clinical Indications for Endotracheal Intubation
- Impending airway obstruction
- Signs of unsustainable work of breathing
- Refractory hypoxemia
- Hypercapnia or acidemia
- Encephalopathy or inadequate airway protection

Additional Considerations
- Does illness trajectory predict deterioration?
- Are difficulties in endotracheal intubation anticipated?
- Is there hemodynamic instability?
- Will intubating now improve the safety of a planned procedure or transportation?
- Will intubating now improve infection control and staff safety?

B  Principles of Ventilator Management in ARDS Due to Covid-19

Measure height and calculate predicted body weight

Female predicted body weight (kg) = 45.5 + (0.91)(height in cm − 152.4)
Male predicted body weight (kg) = 50 + (0.91)(height in cm − 152.4)
Target tidal volume, 6–8 ml/kg of predicted body weight

Set PEEP to prevent lung derecruitment
Monitor hemodynamics, respiratory compliance, and gas exchange at each PEEP setting

If plateau pressure >30 cm of water, consider:
- Reducing tidal volume (minimum, 4 ml/kg of predicted body weight)
- Reducing PEEP
- Allowing higher plateau pressures in patients with obesity or reduced chest-wall compliance

Figure 3. Invasive Mechanical Ventilation for Covid-19–Related Respiratory Failure.
As shown in Panel A, a life-threatening problem in the purple box or a combination of less severe problems in the purple and tan boxes determines the need for endotracheal intubation. In Panel B, “lung derecruitment” refers to the collapse of alveoli. All pressures are measured in the ventilator circuit and referenced to atmospheric pressure. ARDS denotes acute respiratory distress syndrome, and PEEP positive end-expiratory pressure.
arrest with a chaotic emergency intubation, which exposes staff to a greater risk of infection. Signs of excessive effort in breathing, hypoxemia that is refractory to oxygen supplementation, and encephalopathy herald impending respiratory arrest and the need for urgent endotracheal intubation and mechanical ventilation. There is no single number or algorithm that determines the need for intubation, and clinicians must consider a variety of factors (Fig. 3A).

If the patient does not undergo intubation but remains hypoxemic, a high-flow nasal cannula can improve oxygenation and may prevent intubation in selected patients. The use of noninvasive positive-pressure ventilation should probably be restricted to patients with Covid-19 who have respiratory insufficiency due to chronic obstructive pulmonary disease, cardiogenic pulmonary edema, or obstructive sleep apnea rather than ARDS. However, some experts discourage the use of high-flow nasal cannulae and noninvasive ventilation because these treatments may inappropriately delay recognition of the need for endotracheal intubation and expose clinicians to infectious aerosols.

Having awake patients turn to the prone position while they breathe high concentrations of supplemental oxygen may improve gas exchange in patients with severe Covid-19. This approach is supported by a case series describing its use in nonintubated patients with ARDS unrelated to Covid-19. However, whether prone positioning can prevent intubation in patients with severe Covid-19 is unclear. Because it is difficult to provide rescue ventilation to patients who are prone, this position should be avoided in patients whose condition is rapidly deteriorating.

ENDOTRACHEAL INTUBATION

The most skilled available operator should perform endotracheal intubation in patients with Covid-19. The use of unfamiliar PPE, the risk of infection to staff, and the presence of severe hypoxemia in patients all increase the difficulty of intubation. If possible, intubation should be performed after preoxygenation and rapid-sequence induction of sedation and neuromuscular blockade. An antiviral filter should be placed in line with the airway circuit at all times. Video laryngoscopy may allow the operator to have a good view of the airway from a greater distance. However, operators should choose the technique that is most likely to be successful on the first attempt. Continuous-wave capnography is the best method to confirm tracheal intubation.

Patients with Covid-19 often become hypotensive soon after intubation owing to positive-pressure ventilation and systemic vasodilation from sedatives. Therefore, intravenous fluids and vasopressors should be immediately available at the time of intubation, and careful hemodynamic monitoring is essential.

VENTILATOR MANAGEMENT

It is unclear whether Covid-19 is associated with a distinct form of ARDS that would benefit from a new strategy of mechanical ventilation. However, available data suggest that respiratory-system compliance in patients with severe Covid-19 is similar to that in populations enrolled in previous therapeutic trials for ARDS. Therefore, present guidelines recommend that clinicians follow the treatment paradigm developed during the past two decades for ARDS (Fig. 3B). This strategy aims to prevent ventilator-induced lung injury by avoiding alveolar overdistention, hyperoxia, and cyclical alveolar collapse.

To prevent alveolar overdistention, clinicians should limit both the tidal volume delivered by the ventilator and the maximum pressure in the alveoli at the end of inspiration. To do this, clinicians should set the ventilator to deliver a tidal volume of 6 ml per kilogram of predicted body weight; this approach is termed “lung-protective ventilation.” A tidal volume up to 8 ml per kilogram of predicted body weight is allowed if the patient becomes distressed and attempts to take larger tidal volumes. A few times each day, clinicians should initiate a half-second end-inspiratory pause, which allows the pressure in the airway circuit to equilibrate between the patient and the ventilator. The pressure in the airway circuit at the end of the pause — “the plateau pressure” — approximates the alveolar pressure (relative to atmospheric pressure). To prevent alveolar overdistention, the plateau pressure should not exceed 30 cm of water. A higher plateau pressure without the development of ventilator-induced lung injury may be possible in patients with central obesity or noncompliant chest walls.
For patients with Covid-19–related ARDS, setting sufficient positive end-expiratory pressure (PEEP) on the ventilator may prevent alveolar collapse and facilitate the recruitment of unstable lung regions. As a result, PEEP can improve respiratory-system compliance and allow for a reduction in the \(\text{FiO}_2\). However, PEEP can reduce venous return to the heart and cause hemodynamic instability. Moreover, excessive PEEP can lead to alveolar overdistention and reduce respiratory-system compliance. No particular method of determining the appropriate level of PEEP has been shown to be superior to other methods.28

Sedatives and analgesics should be targeted to prevent pain, distress, and dyspnea. They can also be used to blunt the patient’s respiratory drive, which improves patient synchrony with mechanical ventilation. Sedation is especially important in febrile patients with high metabolic rates who are treated with lung-protective ventilation. Neuromuscular blocking agents can be used in deeply sedated patients who continue to use their accessory muscles of ventilation and have refractory hypoxemia.28 These agents can reduce the work of breathing, which reduces oxygen consumption and carbon dioxide production.28 Moreover, sedatives and neuromuscular blocking agents may help reduce the risk of lung injury that may occur when patients generate strong spontaneous respiratory efforts.

**REFRACTORY HYPOXEMIA**

Clinicians should consider prone positioning during mechanical ventilation in patients with refractory hypoxemia (\(\text{PaO}_2:\text{FiO}_2\) of <150 mm Hg during respiration and \(\text{FiO}_2\) of 0.6 despite appropriate PEEP). In randomized trials involving intubated patients with ARDS (not associated with Covid-19), placing the patient in the prone position for 16 hours per day has improved oxygenation and reduced mortality.18,29 However, prone positioning of patients requires a team of at least three trained clinicians, all of whom require full PPE.18 Inhaled pulmonary vasodilators (e.g., inhaled nitric oxide) can also improve oxygenation in refractory respiratory failure, although they do not improve survival in ARDS not associated with Covid-19.18 Extracorporeal membrane oxygenation (ECMO) is a potential rescue strategy in patients with refractory respiratory failure. However, ECMO may not be effective owing to the cytokine storm and hypercoagulability of Covid-19, and its use will probably be limited as the pandemic strains resources.30,32

**SUPPORTIVE CARE**

Patients with Covid-19 often present with volume depletion and receive isotonic-fluid resuscitation. Volume repletion helps maintain blood pressure and cardiac output during intubation and positive-pressure ventilation. After the first few days of mechanical ventilation, the goal should be to avoid hypervolemia.32 Fever and tachypnea in patients with severe Covid-19 often increase insensible water loss, and careful attention must be paid to water balance. If the patient is hypotensive, the dose of vasopressor can be adjusted to maintain a mean arterial pressure of 60 to 65 mm Hg.18 Norepinephrine is the preferred vasopressor. The presence of unexplained hemodynamic instability should prompt consideration of myocardial ischemia, myocarditis, or pulmonary embolism.

In case series, approximately 5% of patients with severe Covid-19 have received renal-replacement therapy15,33; the pathophysiology of the renal failure is currently unclear but is probably multifactorial. Because blood clotting in the circuit is common in patients with severe Covid-19, the efficacy of continuous renal-replacement therapy is uncertain.34

Abnormalities of the clotting cascade, such as thrombocytopenia and elevation of d-dimer levels, are common in patients with severe Covid-19 and are associated with increased mortality.3,35,36 Prophylactic low-dose heparin should be used to reduce the risk of venous thrombosis.37 However, in one series of critically ill patients with Covid-19, one third had clinically significant venous or arterial thrombosis despite thromboprophylaxis.38 Life-threatening thrombosis has also occurred despite full-dose anticoagulation with heparin.34 The benefits and risks of more intense anticoagulation or of using direct thrombin inhibitors in patients with severe Covid-19 are unknown.

Patients hospitalized with severe Covid-19 are often treated empirically with antibiotics.3,9 However, bacterial coinfection is rare when patients first present to the hospital.8,39,40 Antibiotics can be discontinued after a short course if signs of bacterial coinfection, such as leukocytosis and focal pulmonary infiltrates, are absent. Although
Covid-19 itself can cause prolonged fever, clinicians should be vigilant for nosocomial infections.2 Performing cardiopulmonary resuscitation in patients with Covid-19 may expose health care workers to infectious droplets and aerosols. Therefore, all the members of the resuscitation team should wear appropriate PPE before performing rescue ventilation, chest compressions, or defibrillation.41

Patients with Covid-19 who are receiving mechanical ventilation should receive appropriate nutrition and care to prevent constipation and injury to the skin and corneas. If the condition of a patient has stabilized, clinicians should attempt to withhold continuous sedation each day.62 Daily awakening may be challenging because an increase in the work of breathing and the loss of synchrony with mechanical ventilation may result in distress and hypoxemia.

During the Covid-19 pandemic, an overwhelming surge of patients presenting to a hospital may temporarily require the rationing of health care resources. Local guidelines and medical ethics consultation can help clinicians navigate these difficult decisions with patients and their families.

**Areas of Uncertainty**

Little is known about the pathogenesis and treatment of this new disease. Preliminary data from a randomized, placebo-controlled trial involving more than 1000 patients with severe Covid-19 suggest that the investigational antiviral agent remdesivir reduces time to recovery,43 and the Food and Drug Administration (FDA) has granted it emergency-use authorization. No agent is currently FDA-approved for the treatment of severe Covid-19. Numerous randomized trials of many other candidate therapies are ongoing (Table 1).

The delayed onset of critical illness in patients with Covid-19 suggests a maladaptive host response to infection.50 Therefore, there is intense interest in the effects of immunomodulating therapies. Glucocorticoids have been used widely for cytokine storm and respiratory failure in patients with Covid-19; however, there is concern that they may prolong viral shedding and lead to secondary infections.58-60 Current guidelines offer conflicting advice on the use of glucocorticoids. The Surviving Sepsis Campaign suggests a short course of glucocorticoids for moderate-to-severe ARDS related to Covid-19,18 whereas the Infectious Diseases Society of America recommends their use only in the context of a clinical trial.62 For reversal of vasopressor-dependent shock in patients with Covid-19, the Surviving Sepsis Campaign recommends low-dose glucocorticoids (hydrocortisone at a dose of 200 mg daily by means of infusion or with intermittent dosing).18

Other immunomodulating agents currently being evaluated for severe Covid-19 include passive immunotherapy with convalescent plasma, intravenous immunoglobulin, and interleukin-1 and interleukin-6 pathway inhibition.63 Pending results of randomized trials, the risks and benefits of these approaches are also unknown. Candidate therapies for Covid-19 warrant evaluation separately in patients with established severe disease and in those with milder illness to determine whether they reduce the risk of progression.10

**Guidelines**

The recommendations in the present article are largely concordant with the guidelines for severe Covid-19 from the American Thoracic Society, the Infectious Diseases Society of America, the National Institutes of Health, and the Surviving Sepsis Campaign.18,62,64,65

**Conclusions and Recommendations**

For the patient described in the vignette, the most important aspect of care is careful monitoring of his respiratory status to determine whether endotracheal intubation is appropriate. If mechanical ventilation is initiated, the clinician should adhere to a lung-protective ventilation strategy by limiting the plateau pressure and tidal volumes. Deep sedation with neuromuscular blocking agents and prone positioning should be considered if refractory hypoxemia develops. Anticoagulants should be administered to prevent thrombosis. Preliminary data support the use of remdesivir if available. Rigorous adherence to infection-control practices is essential at all times. Given the
Table 1. Selected Candidate Therapies for Coronavirus Disease 2019 (Covid-19).*

<table>
<thead>
<tr>
<th>Class</th>
<th>Availability</th>
<th>Rationale</th>
<th>Clinical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiviral agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroquine</td>
<td>FDA-approved for extraintestinal amoebiasis, malaria; FDA emergency-use authorization from Strategic National Stockpile for certain hospitalized patients with Covid-19</td>
<td>In vitro activity against SARS-CoV-2 44</td>
<td>Limited: small randomized trial showed limited benefit 45; small trial stopped early because of increased mortality with higher dose 46; randomized, controlled trials in progress</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>FDA-approved for lupus, malaria, rheumatoid arthritis; FDA emergency-use authorization from Strategic National Stockpile for certain hospitalized patients with Covid-19</td>
<td>In vitro activity against SARS-CoV-2 47</td>
<td>Limited: small randomized trials and retrospective case series with inconsistent results 48-51; randomized, controlled trials in progress</td>
</tr>
<tr>
<td>Lopinavir–ritonavir</td>
<td>FDA-approved for HIV infection</td>
<td>In vitro activity against SARS-CoV-2 52</td>
<td>Small randomized clinical trial failed to show clinical benefit 53; other randomized, controlled trials in progress</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>Investigational; FDA emergency-use authorization for hospitalized patients with severe Covid-19; compassionate-use program for pregnant women and children with severe Covid-19; expanded-access program for persons unable to participate in clinical trials (ClinicalTrials.gov number, NCT04323761)</td>
<td>In vitro activity against SARS-CoV-2 54</td>
<td>Small, single-group, uncontrolled study showed clinical benefit in a majority of patients 55; underenrolled and underpowered randomized, placebo-controlled trial involving hospitalized patients showed no significant differences in clinical or virologic outcomes 56; randomized, placebo-controlled trial involving hospitalized patients showed faster time to recovery with remdesivir 57; additional clinical trials in progress</td>
</tr>
<tr>
<td>Immune-based agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTK inhibitors (acalabrutinib, ibrutinib, rilzabrutinib)</td>
<td>FDA-approved for some hematologic cancers</td>
<td>Immunomodulation-targeting cytokines</td>
<td>Clinical trials in progress</td>
</tr>
<tr>
<td>Convalescent plasma</td>
<td>Investigational; FDA single-patient emergency IND; expanded-access program for persons ineligible for or unable to participate in clinical trials</td>
<td>Use in other viral illnesses, including H1N1 influenza, SAR, and MERS</td>
<td>Limited: small, uncontrolled cohort studies suggested benefit, but confirmation required 58-59; randomized, controlled trials in progress</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>FDA-approved for multiple indications</td>
<td>Broad immunomodulation</td>
<td>Limited: retrospective, nonrandomized cohort study showed association with lower mortality among patients with severe Covid-19 and ARDS, but concern for survivor treatment bias; randomized clinical trials involving patients with influenza, MERS, or SAR did not show benefit and suggested possible harm (increased viral shedding and increased mortality) 59-60</td>
</tr>
<tr>
<td>Interleukin-1 inhibitors (anakinra, canakinumab)</td>
<td>FDA-approved for some autoimmune diseases</td>
<td>Immunomodulation; activity in macrophage activation syndrome</td>
<td>Clinical trials in progress</td>
</tr>
<tr>
<td>Interleukin-6 inhibitors (sarilumab, siltuximab, tocilizumab)</td>
<td>FDA-approved for some autoimmune diseases and cytokine release syndrome (tocilizumab)</td>
<td>Immunomodulation; activity in cytokine release syndrome</td>
<td>Limited: in a small cohort study, a majority of patients who received siltuximab had an improved or stabilized condition 60; randomized, controlled trials in progress</td>
</tr>
<tr>
<td>JAK inhibitors (baricitinib, ruxolitinib)</td>
<td>FDA-approved for rheumatoid arthritis (baricitinib) and myelofibrosis and polycythemia vera (ruxolitinib)</td>
<td>Broad immunomodulation</td>
<td>Clinical trials in progress</td>
</tr>
</tbody>
</table>

* Selected references are provided for rationale and clinical data. ARDS denotes acute respiratory distress syndrome, BTK Bruton’s tyrosine kinase, FDA Food and Drug Administration, HIV human immunodeficiency virus, IND investigational new drug, JAK Janus kinase, MERS Middle East respiratory syndrome, SAR severe acute respiratory syndrome, and SARS-CoV-2 severe acute respiratory syndrome coronavirus 2.
high risk of complications from severe Covid-19, clinicians should work with patients and families to establish appropriate goals of care at the earliest possible time.

Given the uncertainties regarding effective treatment, clinicians should discuss available clinical trials with patients. In addition, clinicians should discuss the value of autopsies with the families of patients who do not survive.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank the nurses, respiratory therapists, social workers, therapists, chaplains, custodial staff, consultants, and all the other members of the intensive care unit team for their extraordinary courage and professionalism during this pandemic.

REFERENCES


