Modelling Societal Burden of AMU/AMR

Presenter: Chisoni Mumba, PhD

Overview

- AMR burden in humans has been covered to some extent
 - > Increased healthcare costs,
 - > Prolonged duration of hospitalization,
 - > Death,
 - ➤ Incidence (Poudel et al 202).
- We conducted a systematic review in animal health
 - Little data available other than increased costs of antimicrobials, reduced productivity, diagnostic tests, mortality
- Hence the need for assessing the burden by integrating:
 - Animal Health Loss Envelop (AHLE) (Martins et al., 2024).
 - > PALYs (modification of DALYs) (Salih et al 2023)

Animal Health Loss Envelope (AHLE)

- Metric to estimate the financial impact of AMU and AMR through 3 key parameters (Babo Martins et al., 2024).
 - Expenditure in animal health due to AMU.
 - > Production losses due to mortality arising from AMR.
 - ➤ Production losses due to morbidity arising from AMR.
- AMR is a negative externality of AMU

Data needs & potential gaps

Data Category	What's Needed	Potential Data Gaps
Antimicrobial Use (AMU) Data	Data on antimicrobial types and quantities used in livestock.Retail price of antimicrobials.	Lack of granular AMU data (e.g., dosages, duration, species-specific use).Limited pricing data on antimicrobials.
AMR Frequency Measures	- Incidence and prevalence rates of AMR in livestock populations. E.g mastitis in livestock.	 Insufficient surveillance data at the required level of specificity.
Production Losses Due to Mortality	Mortality rates linked to AMR infections.Animal disposal costs.	 Limited data attributing mortality directly to AMR infections.
Production Losses Due to Morbidity	 - AMR-related reductions in production efficiency, including: - Reduced feed conversion. - Slower growth rates. - Delayed selling or product withdrawal. - Increased premature culling & replacement costs. - Yield reductions (e.g., milk, meat, eggs). - Reproductive impacts (e.g., lower fertility). 	- Scarcity of data linking AMR infections to production losses Limited long-term studies on AMR effects in different livestock systems.
Health Expenditure 29/8/25	- Costs of treating AMR-infected livestock, including: - Additional or second-line therapies More expensive diagnostic tests Veterinary services and farm labour AMR prevention and mitigation (e.g., biosecu版映 对国际的原则是是是某人的。	- Lack of detailed data associating AMR cases with specific treatment costs Limited pricing data for second-line treatments and diagnostics. ECHO session 4

What are DALYs

- DALYs = Disability Adjusted Life Years
- A common measurement unit for morbidity and mortality
- Facilitates comparisons of all types of health outcomes

How are DALYs constructed?

- ADALY is a health outcome measure with two main components
 - >Quality of life reduced due to a disability
 - Lifetime lost due to premature mortality.
- DALYs can be expressed as follows:
 - \triangleright DALYs = YLD + YLL

Modification of DALYS to Productivity Adjusted Life Years Using a Case of AMR-Mastitis in Commercial Dairy Farms

PALYs concept for cattle

- We reconfigured 4 parameters from standard DALYs model:
 - > Standard lifespan,
 - Disability weight,
 - > Discounting,
 - > Age weighting.
- Questionnaire to capture information on these contextspecific parameters

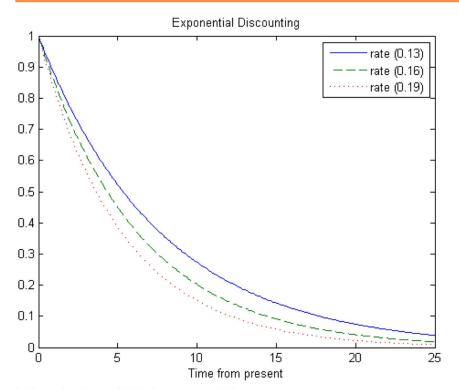
Standard lifespan (life expectancy)

- We used WHO standard life tables to calculate life expectancy
 - No. cows dying in each age of life e.g. at birth
 - Obtain information by asking total no. animals lost in a year & age at death
 - Calibrate on l_x table
- Where x= age group, n_x=no. cows at age_x, d_x=death rate at age_x, l_x-prob of survival at age_x, q_x= probability of dying at age_x, L_x= midpoint survival, ex=life expectancy at age_x

Table 3.1: Standard life expectancy for cattle (Cows)

x	n_x	$d_x = n_x - n_{x+1}$	$l_x = \frac{n_x}{n_0}$	$q_x = \frac{d_x}{n_x}$	$L_x = \frac{(l_x + l_{x+1})}{2}$	$T_x = T_{x-1} - L_{x-1}$	$e_x = \frac{T_x}{l_x}$
0	116	5	1.00	0.04	0.98	12.83	12.83
1	111	5	0.96	0.05	0.94	11.85	12.38
2	106	5	0.91	0.05	0.89	10.91	11.94
3	101	4	0.87	0.04	0.85	10.02	11.51
4	97	5	0.84	0.05	0.81	9.17	10.96
5	92	5	0.79	0.05	0.77	8.35	10.53
6	87	5	0.75	0.06	0.73	7.58	10.11
7	82	5	0.71	0.06	0.69	6.85	9.70
8	77	5	0.66	0.06	0.64	6.17	9.29
9	72	4	0.62	0.06	0.60	5.53	8.90
10	68	4	0.59	0.06	0.57	4.92	8.22
11	64	4	0.55	0.06	0.53	4.35	7.89
12	60	5	0.52	0.08	0.50	3.82	7.38
13	55	2	0.47	0.04	0.47	3.32	7.01
14	53	5	0.46	0.09	0.44	2.86	6.25
15	48	4	0.41	0.08	0.40	2.42	5.85

Disability weight



- Disability is inability to perform everyday tasks in a way that is usual for cattle
- Disability weight is a weight function that reflects severity of a cattle disease between 0 (perfect health) & 1 (equivalent to death)
- Each disability condition is assigned a number between 0 & 1, depending on severity of disease

Table 1:	Table 1: Definition of disability weight (Dw) for cattle according to Salih, 2014					
Levels	Description	Dw				
	1. Beef production [(500 - 600kg for oxen), (300 - 516kg for bulls), (320 - 440 kg for cows)].					
	2. Milk production [5 - 6 litres per day].					
1	3. Draught power [3 - 5hrs for cows, 5 - 6hrs for oxen].	0				
	4. Social status [acceptable].					
	5. Dowry payment [acceptable].					
	6. Cultural ceremonies [acceptable].					
	1. Beef production [(400 - 499kg for oxen), (260 - 299kg for bulls), (280 -					
	319kg for cows)].					
	2. Milk production [3:5 - 4:9 litres per day].					
	3. Draught power [2 - 3hrs for cows, 3 - 4hrs for oxen].					
	4. Social status [not very acceptable for the reason of loss of condition].					
2	5. Dowry payment [not very acceptable for the reason of loss of condition].	0:01 - 0:33				
	6. Cultural ceremonies [not very acceptable for the reason of loss of					
	condition].					
	1. Beef production [(300 - 399kg for oxen), (220- 259kg for bulls), (200 - 239kg					
	for cows)].					
	2. Milk production [2- 3:4 litres per day].					
3	3. Draught power [1 - 2hrs for cows, 2 - 3hrs for oxen].					
	4. Social status [not acceptable for the reason of being diseased].					
	5. Dowry payment [not acceptable for the reason of being diseased].	0:34 - 0:66				
	6. Cultural ceremonies [not very acceptable for the reason of being diseased].					
	1. Beef production [(300 - 399kg for oxen), (220 - 259kg for bulls), (200- 239kg					
	for cows)].					
	2. Milk production [2 - 3:4 litres per day].					
4	3. Draught power [1 - 2hrs for cows, 2- 3hrs for oxen].	0:67 -0:99				
	4. Social status [not acceptable for the reason of being diseased].					
	5. Dowry payment [not acceptable for the reason of being diseased].					
	6. Cultural ceremonies [not very acceptable for the reason of being diseased].					

Discounting

- Same discount function (exponential decay) used in the DALYs model for human population
- But, change discount rate to be able to obtain the same effect of discounting in the number of years of life lost at a different time in the future

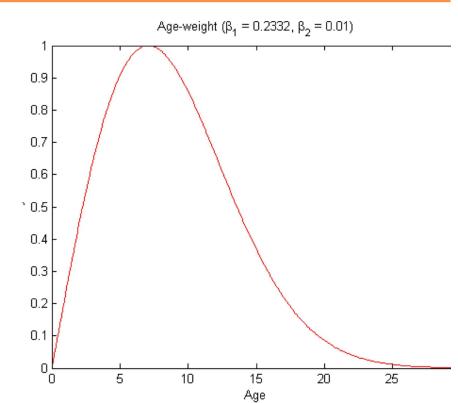
$$G(x) = e^{-rx}$$

• Where: G(x) is a continuous discounting function at any age x and r>0 is the discount rate.

1. Discounting effects on PALYs: A comparison of different rates.

Age weighting

- We value years of life lived during productive ages reason being based on economic and social value
- The preference for productive ages can be expressed mathematically as


$$R(x) = \beta_1 x e^{-\beta_2 x^2}$$

• Where x is the age of the cattle, while β_1 and β_2 are parameters of the age-weighting function

Age weighting...

- β1 determines the importance of age-weights
- β2 is an adjustment constant, chosen so that the introduction of age-weights does not alter the total number of years of life lost
- The value of $\beta 1 = 0.2332$ and $\beta 2$ = 0.01 used in the PALY calculation
- Data based on questionnaires

Calculation of PALYs for Cattle using 3 scenarios

- 1. Basic formula,
- 2. PALYS with discounting
- 3. PALYs with both Age weighting and Discounting

1. Basic Formula for PALYs

- YLD_{cattle} = $N_i \times D_w \times I$
- YLL_{cattle} = $N_d \times L$
- Where;
 - (YLDs) years of life lived with Mastitis (AMR)
 - (YLLs) year of life lost due premature mortality- Mastitis (AMR)

- Key
 - $N_i = \text{No. cows with Mastitis}$
 - N_d =No. death due Mastitis
 - L = Standard life expectancy at age of death
 - D_w = Severity of disease
 - i = Duration of the disease

2. PALYs with Discounting

• Derive the formula for YLD by multiplying the basic YLD formula with the discounting function

•
$$YLD = \frac{N_i D_w [1-e^{-rI}]}{r}$$

• Replace the average duration (I) by standard life expectancy at the age of death (L) to get YLL

•
$$YLL = \frac{N_d[1-e^{-rL}]}{r}$$

- Key to PALYs formula
 - N_i the number of cows with ECF in each group.
 - r discount rate
 - N_d No. death in cattle due to AMR Mastitis.
 - L- standard life expectancy at age of death.
 - D_w disability weight.
 - I- duration of the disease.

3. YLD With Age-weighting & Discounting

$$\begin{array}{c} \bullet \; \mathit{YLD} = \mathit{N_i} \, \mathit{D_w} \, \beta_1 \, e^{a_i r} \left[\sqrt{\pi} r e^{\frac{r^2}{4\beta_2}} \left(\frac{erf(2\beta_2(a_i + I) + r) + erf\left(\frac{2\beta_2 a_i + r}{2\sqrt{\beta_2}}\right)}{4\sqrt{\beta_2^3}} \right) + \left(\frac{-e^{-(a_i + I)(\beta_2(a_i + I) + r) + e^{-a_i(\beta_2 a_i + r)}}}{2\beta_2} \right) \right] \end{array}$$

• Where: N_i = No. incident cases, D_w = disability weight, I= duration of AMR Mastitis, r=discount rate, a_i =age of onset, erf =error function, β_1 & β_2 are 0.2332 and 0.01 respectively

3. YLL with Age-weighting & Discounting

• Replace duration of disease I with standard life expectancy (L), age of onset a_i with the age of death a_d

$$\begin{array}{l} \bullet \; \textit{YLL} = N_d \beta_1 \, e^{a_d r} \left[\sqrt{\pi} r e^{\frac{r^2}{4\beta_2}} \left(\frac{erf(2\beta_2(a_d + L) + r) + erf\left(\frac{2\beta_2 a_d + r}{2\sqrt{\beta_2}}\right)}{4\sqrt{\beta_2^3}} \right) + \\ \left(\frac{-e^{-(a_d + L)(\beta_2(a_d + L) + r)} + e^{-a_d(\beta_2 a_d + r)}}{2\beta_2} \right) \right] \end{array}$$

Reporting Results of PALYs and AHLEs

Reporting Results of PALYs

Table 2. PALYs for cows with $D_w = 0.33$.

Age group	N_i	a_i	I	D_w	YLD	N_d	a_d	L	YLL	PALYs
0-4	6	2	1	0.33	4.18	6	3	11.51	71.14	75.32
5–9	17	7	1	0.33	11.77	17	8	9.29	141.41	153.18
10-15	23	12	1	0.33	10.88	23	13	7.01	92.94	103.82
16-20	29	18	1	0.33	7.75	29	19	3.50	20.51	28.26
20 +	41	20	1	0.33	2.06	41	21	1.50	7.56	9.62
Total	116				36.64	116			333.56	370.20

Summarizing results

- We will have 3 categories of PALYs and compare
 - > PALYs without AMR-Resistant Mastitis
 - > PALYs with AMR-Resistant Mastitis
- Simulate PALYs with mitigation e.g. AM stewardship
- AHLE will be presented in monetary terms (financial cost analysis)
 - Compare cost of AMU without AMR-Mastitis & with AMR-Mastitis

Thank you for Listening

Scan this code to save my contact details instantly

