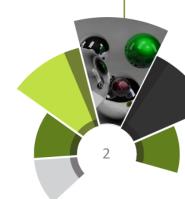


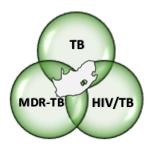
Operational realities of the South African TB molecular diagnostic multiplatform approach


Puleng Marokane and Pedro Da Silva National Priority Programs of the National Health Laboratory Service

Overview:

- Background and the South African context.
- Evolution of molecular diagnostics in the TB program.
- Key steps in diversification implementation overview.
- Programmatic considerations:
 - Procurement and supply chain management.
 - Implementation.
 - Pre-analytic considerations.
 - Analytic considerations.
 - Post-analytic considerations.
- Concluding remarks.

Situation

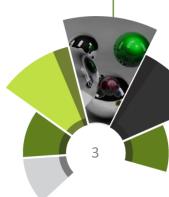


High-burden TB, TB/HIV co-infection, and MDR-TB:

	2009	2023
Population estimates:	50 million	63 million
TB incidence:	970 per 100'000	427 per 100'000
TB incidence in PLHIV:	577 per 100'000	230 per 100'000

Change in TB incidence (2015-2023):

↓ 57%

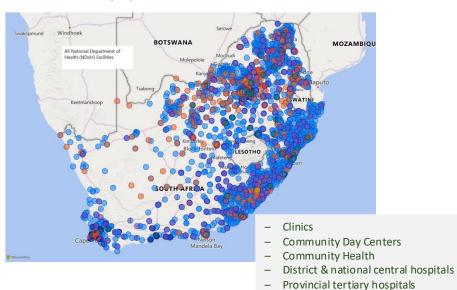

Large gap between diagnosed TB persons and estimated TB incidence

Treatment success rate:

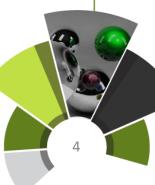
- RR-TB/pre-XDR-TB/XDR-TB: Room for improvement

WHO Global tuberculosis report 2010 WHO Global tuberculosis report 2023

Laboratory Services

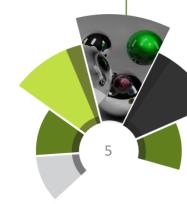

Regional hospitals.

National Health Laboratory Service:


 Parastatal entity providing pathology services to the Ministry of Health on a fee-for-service basis.

Servicing 4'997 healthcare facilities (state sector)
 ~85% of the population:

- 233 laboratories:


Laboratory Services

National Health Laboratory Service:

- Fully integrated service across all pathology disciplines [including forensics].
- ~114 million tests conducted annually [all pathology tests].
- HIV- & TB-related diagnostic and disease monitoring tests: ~20% of all tests.
- HIV viral load and TB-NAAT among the top ten tests by volume.

Program		Test	Annual volumes	Laboratory footprint
	TB-NAAT	Initial diagnostic (RIF and/or INH)	>3 million	165
TD	TB-N	Additional resistance (FLQs, INH)	25′000	15
ТВ	ТВ-с	ulture	600'000	15
	pDST	-	10'000	6
	CD4-	count	2.2 million	49
	Refle	exed CrAg	300'000	49
HIV	EID F	PCR	650'000	12
	HIV	<i>v</i> iral load	6.7 million	27
	Sequencing for HIV drug resistance		3′000	5
[Chemistry; mid	robiol	octed by the NHLS (including TB & HIV): bgy; virology; anatomical; histopathology; y; genetics; immunology; forensics, etc.]	>114 million	233

Laboratory Services: tuberculosis

TB diagnostic services:

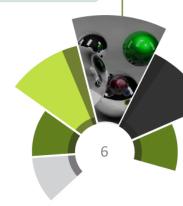
- Mixed decentralised and centralised offering.
- Diagnostic programs:
 - Diagnosis and detection of resistance to RIF with/out INH:
 - Xpert® MTB/RIF Ultra [RIF only].
 - o Becton Dickinson (BD) MAXTM MDR-TB [RIF and INH].
 - o Roche cobas® MTB and MTB/RIF-INH [RIF and INH].
 - Detection of resistance to FLQ and INH:
 - Xpert[®] MTB/XDR.
 - Culture and pDST.
 - tNGS/WGS.

Tiered services:

Tier 4: NTBRL/SRL: 1

- TB-NAAT, Xpert MTB/XDR,
- pDST (incl. MIC) BMD + Agar + MGIT
- tNGS/WGS

Tier 3: 6 laboratories

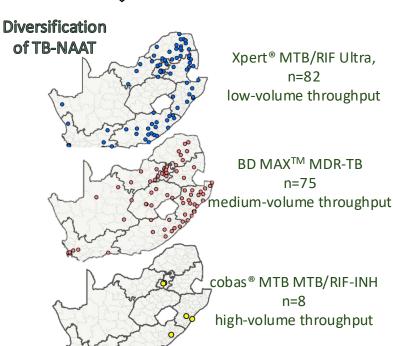

- TB-NAAT, Xpert MTB/XDR,
- Microscopy and culture,
- pDST, MOTT PCR

Tier 2: 15 laboratories

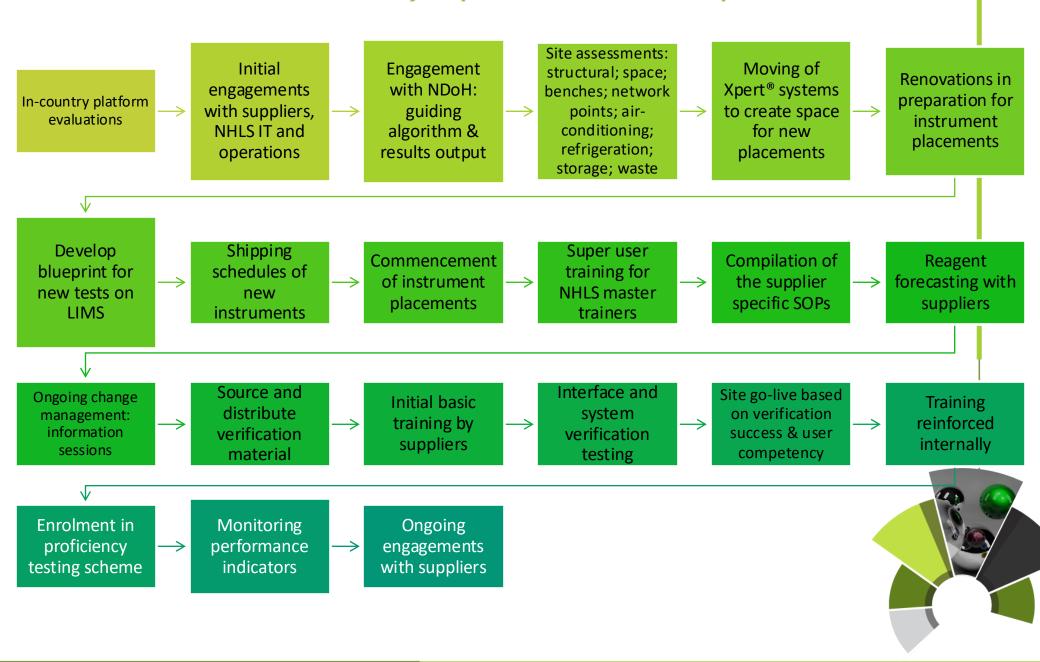
- TB-NAAT, Xpert® MTB/XDR,
- Microscopy and culture

Tier 1: 173 laboratories

- TB-NAAT and microscopy


Evolution of molecular diagnostics in the South African TB program

Xpert® MTB/RIF Ultra sites, n=165 Low-/medium-/high-/very high-volume


2023:

Reasons for diversification:

- Risks of having a single supplier servicing a large program
 - Inability of sole supplier to meet testing demands (post-COVID-19, 2022) of the national TB-recovery plan.
- Procurement must follow tender processes:
 - Introduction of competition and alternate suppliers into the market based on WHO-recommendations for moderate complexity platforms.
 - Outcome:
 - Xpert® MTB/RIF Ultra only at low-volume testing sites.
 - Medium-volume testing sites were assigned to BD MAXTM MDR-TB.
 - High-volume testing sites were assigned to cobas® MTB MTB/RIF-INH.

Key steps in diversification - implementation overview

Procurement & supply chain management

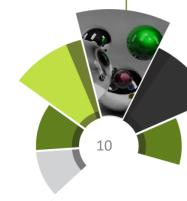
Challenges/lessons learnt

(depending on the supplier).

Implemented solutions/interventions

Planning around phase out stock (of the outgoing supplier)

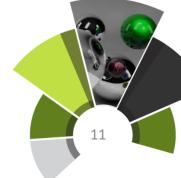
Risks in single suppliers servicing large programs.	 Diversification process to introduce additional suppliers. However, too many suppliers (servicing the same program) may pose other challenges.
 Cheaper assays may require additional resources with more complex workflows. More complex workflows (less automation) may increase TAT, impacting patient care. 	 SOPs which streamline workflows, e.g., interleaving with the BD MAXTM platform. TAT has progressively improved across the moderate-complexity platforms as the program matured, and users became more comfortable with the newer technologies.
 Indirect implementation costs: Renovations to accommodate larger instruments (e.g., cobas® platforms). Procurement of wider laboratory benches to accommodate the BD MAXTM platform. Refrigeration capacity (e.g., for cobas® reagents). Interface developments between instruments and the LIMS. Other IT-related costs. 	Provision of budget to allow for renovations and additional procurements.
 Forecast planning: 3-to-4-month manufacturing lead time 	 Modeling projections to plan forecasts. Insisting on in-country reserve of buffer stock to accommodate testing surges/fluctuations.


during transitions.

Procurement & supply chain management

Challenges/lessons learnt

- Relationships:
 - Relationship building with appointed suppliers for successful implementation.
 - Define roles and responsibilities.
 - Define the escalation pathway.


- Regularization of meetings between implementer and suppliers.
- Service level agreements established:
 - Defines the procedure for issue logging and supplier response times.
 - Number of in-country support engineers and expected travel time.
 - Defines what happens when resolution cannot be found for an issue within 12hrs, 24hrs, >24hrs, etc.
 - Specifies that majority of spare parts should be accommodated in-country no minimise downtime.
 - Platform servicing schedules.
 - Reporting and monitoring requirements (e.g., supplier dashboards for error rates, etc.)

Implementation

Challenges/lessons learnt

 Remote access for programmatic monitoring: Compatibility with the existing LIMS. Transmission of assay testing parameters: cycle thresholds, melting points, etc. 	Ongoing developments.
 Proficiency testing: Differences in limits of detection. Differences in target detection between assays. Variation in how MTB is detected and non-wild type sequence detection. Not all assays reporting isoniazid susceptibility. 	 Determined compatibility of existing proficiency testing scheme for newly included assays. Ongoing revision of performance on proficiency testing across suppliers.
 National guiding algorithm: Required revision as supplier centric to Xpert MTB/RIF Ultra. 	 Referred to all assays as 'TB-NAAT'. National algorithm revised. Dissemination of algorithm and training.

Pre-analytic considerations

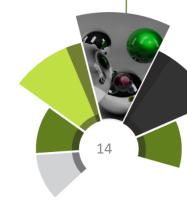
Challenges/lessons learnt

 Variation in pre-analytical specimen processing. Different duration in pre-analytical processing (e.g., sonication required for the cobas® MTB assay). 	 Internal super-user training with workflow assessments, for the implementation team. Development of supplier specific SOPs. Supplier-initiated training for laboratories. Reinforcement of training across all testing sites by the implementer. Change management through information sessions.
 Different processing reagents between suppliers. Depending on the supplier, >1 reagent type kit required for pre-processing. Reagent type kits differ in quantities of components. 	 Development of a reagent calculator per supplier which factors existing stock of individual components and anticipated testing numbers. Reinforcement through information sessions.
 Different reagent storage requirements, i.e., some require refrigeration. Increased storage space requirements and refrigeration. 	 Site assessments were completed (space, storage, workflow, etc.). Procurement of additional refrigeration units, where required.
Different workflows between assays.	 Development of supplier specific SOPs. Supplier-initiated training Reinforcement of training across all testing sites. Ongoing monitoring of performance indicators.

Analytic considerations

Challenges/lessons learnt

and the same same	
 Not all systems are 'closed': With Xpert® Ultra, processed specimen is loaded into a contained cartridge with subsequent testing steps happening within the cartridge. This differs for cobas® MTB MTB/RIF-INH and BD MAXTM MDR-TB assays. 	Introduction of environmental sampling and controls for both moderate-complexity assays.
 Increased waste generation (solid) with both adopted moderate complexity platforms; and specifically liquid waste for cobas® MTB MTB/RIF- INH. 	 Consider laboratory storage space. Adaption of the existing waste logistics to accommodate increased waste generation (including provision for liquid waste).
 Variation in platform complexity. Lack of full automation, i.e., cobas® MTB MTB/RIF-INH (sorting for susceptibility testing is a manual process following on from the MTB-detection assay). 	 Development of supplier specific SOPs. Supplier-initiated training. Reinforcement of training across all testing sites. Change management through information sessions.
 Variation in target detection (e.g., katG mutation detection) and supplier interpretive result algorithms. Discrepant results between assays where the same 	 Supplier engagement to better understand algorithm logic for defining MTB detection and resistance calls. Post-implementation assessment and monitoring of


- client may have been tested using different assays at different time points.
- Unique result categories per assay: 'MTB trace detected' for Xpert® MTB/RIF Ultra and 'MTB low positive' for the BD MAXTM MDR-TB assay.

- performance indicators across assays (ongoing).
- Conversion of specific instrument generated results, via developed interfaces, to 'standardise' and guide more direct clinical management.

Analytic considerations

Challenges/lessons learnt

 Sensitivity to environmental temperatures, e.g., PCR-heater warnings on BD MAX[™] MDR-TB assay. 	 Environmental temperature monitoring. Procurement of air-conditioning units to control temperature.
 Recommendations for moderate-complexity platforms exclude testing of extra-pulmonary specimen types. 	 At cobas® MTB MTB/RIF-INH and BD MAXTM MDR-TB testing sites, Xpert® platforms were retained to specifically conduct testing of specimens of extra-pulmonary origin: two separate workflows.
 Increased sensitivity for detection with TB-NAAT assays: Importance of maintaining good laboratory practice to avoid contamination. 	 Strict adherence to SOPs and good lab practice. Performance monitoring through proficiency testing.

Post-analytic considerations

Challenges/lessons learnt

Implemented solutions/interventions

- Result reporting:
 - Xpert® MTB/RIF Ultra [RIF only].
 - BD MAX[™] MDR-TB [RIF and INH].
 - Roche cobas® MTB and MTB/RIF-INH [RIF and INH].

- Where RIF R is detected (irrespective of TB-NAAT used), further centralised testing on 2nd specimen: Xpert® MTB/XDR and TB-culture.
 - Higher sensitivity for isoniazid resistance detection with Xpert® MTB/XDR (inclusion of fabG1 and oxyR-ahpC, in addition to katG and inhA) – possible discordance.
- Standardised approach adopted since isoniazid not reported by all assays:
 - Suppress isoniazid susceptible results (not released).
 - Only release isoniazid where resistance is detected (released).

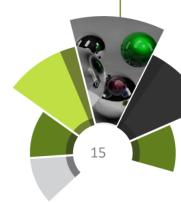
DECENTRALISED testing

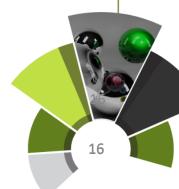
- Xpert® MTB/RIF Ultra, or
- -BD MAXTM MDR-TB, or
- Roche cobas® MTB MTB/RIF-INH testing

Result:

MTBC/RIF R

CENTRALISED testing


Digest/decontaminate


Xpert® MTB/XDR and/or (sediment)

Concluding remarks

- Diversification of TB-NAAT testing in South Africa required specific considerations and implementation strategies.
- Diversification may not be applicable in certain settings.
- Consider potential impact of increased algorithm complexity.
- Programmatic transitions take time: ours spanned 19 months.
- Consider the suitability of the supplier's workflow to your setting/infrastructure/individual laboratory level.
- Each setting is unique and may require adaptions for what is best suited.

Acknowledgements

- NPP TB-NAAT program:
 - Dr M. Pedro da Silva, Mbuti Samuel Radebe, Lithole Makhubalo
- Centre for Tuberculosis, NICD:
 - Dr Shaheed V Omar, Dr Farzana Ismail
- Data Analysis:
 - Dr Naseem Cassim, Silence Ndlovu
- Wits Diagnostic Innovation Hub
- Wits Diagnostic Innovation Hub R&D team:
 - Anura David, Prof Lesley Scott
- Commercial collaborators:
 - Cepheid, Roche, Becton Dickinson, and others
- NHLS Executive Team and CEO: Prof Koleka Mlisana
- NHLS, TB-Subcommittee of the Microbiology Expert Committee
- NHLS Wider TB-Forum
- NHLS TB-NAAT and TB-culture laboratories
- · National and Provincial Departments of Health
- National TB Program

