Operational realities of the South African TB molecular diagnostic multiplatform approach Puleng Marokane and Pedro Da Silva National Priority Programs of the National Health Laboratory Service #### Overview: - Background and the South African context. - Evolution of molecular diagnostics in the TB program. - Key steps in diversification implementation overview. - Programmatic considerations: - Procurement and supply chain management. - Implementation. - Pre-analytic considerations. - Analytic considerations. - Post-analytic considerations. - Concluding remarks. #### Situation High-burden TB, TB/HIV co-infection, and MDR-TB: | | 2009 | 2023 | |------------------------|-----------------|-----------------| | Population estimates: | 50 million | 63 million | | TB incidence: | 970 per 100'000 | 427 per 100'000 | | TB incidence in PLHIV: | 577 per 100'000 | 230 per 100'000 | Change in TB incidence (2015-2023): ↓ 57% Large gap between diagnosed TB persons and estimated TB incidence #### **Treatment success rate:** - RR-TB/pre-XDR-TB/XDR-TB: Room for improvement WHO Global tuberculosis report 2010 WHO Global tuberculosis report 2023 ## **Laboratory Services** Regional hospitals. #### **National Health Laboratory Service:** Parastatal entity providing pathology services to the Ministry of Health on a fee-for-service basis. Servicing 4'997 healthcare facilities (state sector) ~85% of the population: #### - 233 laboratories: ### **Laboratory Services** #### **National Health Laboratory Service:** - Fully integrated service across all pathology disciplines [including forensics]. - ~114 million tests conducted annually [all pathology tests]. - HIV- & TB-related diagnostic and disease monitoring tests: ~20% of all tests. - HIV viral load and TB-NAAT among the top ten tests by volume. | Program | | Test | Annual volumes | Laboratory
footprint | |-----------------|------------------------------------|--|----------------|-------------------------| | | TB-NAAT | Initial diagnostic (RIF and/or INH) | >3 million | 165 | | TD | TB-N | Additional resistance (FLQs, INH) | 25′000 | 15 | | ТВ | ТВ-с | ulture | 600'000 | 15 | | | pDST | - | 10'000 | 6 | | | CD4- | count | 2.2 million | 49 | | | Refle | exed CrAg | 300'000 | 49 | | HIV | EID F | PCR | 650'000 | 12 | | | HIV | <i>v</i> iral load | 6.7 million | 27 | | | Sequencing for HIV drug resistance | | 3′000 | 5 | | [Chemistry; mid | robiol | octed by the NHLS (including TB & HIV): bgy; virology; anatomical; histopathology; y; genetics; immunology; forensics, etc.] | >114 million | 233 | #### Laboratory Services: tuberculosis #### **TB diagnostic services:** - Mixed decentralised and centralised offering. - Diagnostic programs: - Diagnosis and detection of resistance to RIF with/out INH: - Xpert® MTB/RIF Ultra [RIF only]. - o Becton Dickinson (BD) MAXTM MDR-TB [RIF and INH]. - o Roche cobas® MTB and MTB/RIF-INH [RIF and INH]. - Detection of resistance to FLQ and INH: - Xpert[®] MTB/XDR. - Culture and pDST. - tNGS/WGS. #### **Tiered services:** #### Tier 4: NTBRL/SRL: 1 - TB-NAAT, Xpert MTB/XDR, - pDST (incl. MIC) BMD + Agar + MGIT - tNGS/WGS #### Tier 3: 6 laboratories - TB-NAAT, Xpert MTB/XDR, - Microscopy and culture, - pDST, MOTT PCR #### Tier 2: 15 laboratories - TB-NAAT, Xpert® MTB/XDR, - Microscopy and culture #### Tier 1: 173 laboratories - TB-NAAT and microscopy # Evolution of molecular diagnostics in the South African TB program Xpert® MTB/RIF Ultra sites, n=165 Low-/medium-/high-/very high-volume 2023: #### Reasons for diversification: - Risks of having a single supplier servicing a large program - Inability of sole supplier to meet testing demands (post-COVID-19, 2022) of the national TB-recovery plan. - Procurement must follow tender processes: - Introduction of competition and alternate suppliers into the market based on WHO-recommendations for moderate complexity platforms. - Outcome: - Xpert® MTB/RIF Ultra only at low-volume testing sites. - Medium-volume testing sites were assigned to BD MAXTM MDR-TB. - High-volume testing sites were assigned to cobas® MTB MTB/RIF-INH. # Key steps in diversification - implementation overview # **Procurement & supply chain management** ### Challenges/lessons learnt (depending on the supplier). ### Implemented solutions/interventions Planning around phase out stock (of the outgoing supplier) | Risks in single suppliers servicing large programs. | Diversification process to introduce additional suppliers. However, too many suppliers (servicing the same program) may pose other challenges. | |---|--| | Cheaper assays may require additional resources with more complex workflows. More complex workflows (less automation) may increase TAT, impacting patient care. | SOPs which streamline workflows, e.g., interleaving with the BD MAXTM platform. TAT has progressively improved across the moderate-complexity platforms as the program matured, and users became more comfortable with the newer technologies. | | Indirect implementation costs: Renovations to accommodate larger instruments (e.g., cobas® platforms). Procurement of wider laboratory benches to accommodate the BD MAXTM platform. Refrigeration capacity (e.g., for cobas® reagents). Interface developments between instruments and the LIMS. Other IT-related costs. | Provision of budget to allow for renovations and additional procurements. | | Forecast planning: 3-to-4-month manufacturing lead time | Modeling projections to plan forecasts. Insisting on in-country reserve of buffer stock to accommodate testing surges/fluctuations. | during transitions. ## **Procurement & supply chain management** #### Challenges/lessons learnt - Relationships: - Relationship building with appointed suppliers for successful implementation. - Define roles and responsibilities. - Define the escalation pathway. - Regularization of meetings between implementer and suppliers. - Service level agreements established: - Defines the procedure for issue logging and supplier response times. - Number of in-country support engineers and expected travel time. - Defines what happens when resolution cannot be found for an issue within 12hrs, 24hrs, >24hrs, etc. - Specifies that majority of spare parts should be accommodated in-country no minimise downtime. - Platform servicing schedules. - Reporting and monitoring requirements (e.g., supplier dashboards for error rates, etc.) # **Implementation** # Challenges/lessons learnt | Remote access for programmatic monitoring: Compatibility with the existing LIMS. Transmission of assay testing parameters: cycle thresholds, melting points, etc. | Ongoing developments. | |--|--| | Proficiency testing: Differences in limits of detection. Differences in target detection between assays. Variation in how MTB is detected and non-wild type sequence detection. Not all assays reporting isoniazid susceptibility. | Determined compatibility of existing proficiency testing scheme for newly included assays. Ongoing revision of performance on proficiency testing across suppliers. | | National guiding algorithm: Required revision as supplier centric to Xpert MTB/RIF Ultra. | Referred to all assays as 'TB-NAAT'. National algorithm revised. Dissemination of algorithm and training. | # Pre-analytic considerations ## Challenges/lessons learnt | Variation in pre-analytical specimen processing. Different duration in pre-analytical processing (e.g., sonication required for the cobas® MTB assay). | Internal super-user training with workflow assessments, for the implementation team. Development of supplier specific SOPs. Supplier-initiated training for laboratories. Reinforcement of training across all testing sites by the implementer. Change management through information sessions. | |---|--| | Different processing reagents between suppliers. Depending on the supplier, >1 reagent type kit required for pre-processing. Reagent type kits differ in quantities of components. | Development of a reagent calculator per supplier which factors existing stock of individual components and anticipated testing numbers. Reinforcement through information sessions. | | Different reagent storage requirements, i.e., some require refrigeration. Increased storage space requirements and refrigeration. | Site assessments were completed (space, storage, workflow, etc.). Procurement of additional refrigeration units, where required. | | Different workflows between assays. | Development of supplier specific SOPs. Supplier-initiated training Reinforcement of training across all testing sites. Ongoing monitoring of performance indicators. | # **Analytic considerations** ### Challenges/lessons learnt | and the same same | | |---|--| | Not all systems are 'closed': With Xpert® Ultra, processed specimen is loaded into a contained cartridge with subsequent testing steps happening within the cartridge. This differs for cobas® MTB MTB/RIF-INH and BD MAXTM MDR-TB assays. | Introduction of environmental sampling and controls for both moderate-complexity assays. | | Increased waste generation (solid) with both
adopted moderate complexity platforms; and
specifically liquid waste for cobas® MTB MTB/RIF-
INH. | Consider laboratory storage space. Adaption of the existing waste logistics to accommodate increased waste generation (including provision for liquid waste). | | Variation in platform complexity. Lack of full automation, i.e., cobas® MTB MTB/RIF-INH (sorting for susceptibility testing is a manual process following on from the MTB-detection assay). | Development of supplier specific SOPs. Supplier-initiated training. Reinforcement of training across all testing sites. Change management through information sessions. | | Variation in target detection (e.g., katG mutation detection) and supplier interpretive result algorithms. Discrepant results between assays where the same | Supplier engagement to better understand algorithm logic for defining MTB detection and resistance calls. Post-implementation assessment and monitoring of | - client may have been tested using different assays at different time points. - Unique result categories per assay: 'MTB trace detected' for Xpert® MTB/RIF Ultra and 'MTB low positive' for the BD MAXTM MDR-TB assay. - performance indicators across assays (ongoing). - Conversion of specific instrument generated results, via developed interfaces, to 'standardise' and guide more direct clinical management. # **Analytic considerations** ## Challenges/lessons learnt | Sensitivity to environmental temperatures, e.g.,
PCR-heater warnings on BD MAX[™] MDR-TB assay. | Environmental temperature monitoring. Procurement of air-conditioning units to control temperature. | |--|--| | Recommendations for moderate-complexity
platforms exclude testing of extra-pulmonary
specimen types. | At cobas® MTB MTB/RIF-INH and BD MAXTM MDR-TB testing
sites, Xpert® platforms were retained to specifically conduct
testing of specimens of extra-pulmonary origin: two separate
workflows. | | Increased sensitivity for detection with TB-NAAT assays: Importance of maintaining good laboratory practice to avoid contamination. | Strict adherence to SOPs and good lab practice. Performance monitoring through proficiency testing. | ### Post-analytic considerations #### Challenges/lessons learnt #### Implemented solutions/interventions - Result reporting: - Xpert® MTB/RIF Ultra [RIF only]. - BD MAX[™] MDR-TB [RIF and INH]. - Roche cobas® MTB and MTB/RIF-INH [RIF and INH]. - Where RIF R is detected (irrespective of TB-NAAT used), further centralised testing on 2nd specimen: Xpert® MTB/XDR and TB-culture. - Higher sensitivity for isoniazid resistance detection with Xpert® MTB/XDR (inclusion of fabG1 and oxyR-ahpC, in addition to katG and inhA) – possible discordance. - Standardised approach adopted since isoniazid not reported by all assays: - Suppress isoniazid susceptible results (not released). - Only release isoniazid where resistance is detected (released). **DECENTRALISED** testing - Xpert® MTB/RIF Ultra, or - -BD MAXTM MDR-TB, or - Roche cobas® MTB MTB/RIF-INH testing Result: MTBC/RIF R **CENTRALISED** testing Digest/decontaminate Xpert® MTB/XDR and/or (sediment) #### **Concluding remarks** - Diversification of TB-NAAT testing in South Africa required specific considerations and implementation strategies. - Diversification may not be applicable in certain settings. - Consider potential impact of increased algorithm complexity. - Programmatic transitions take time: ours spanned 19 months. - Consider the suitability of the supplier's workflow to your setting/infrastructure/individual laboratory level. - Each setting is unique and may require adaptions for what is best suited. ### Acknowledgements - NPP TB-NAAT program: - Dr M. Pedro da Silva, Mbuti Samuel Radebe, Lithole Makhubalo - Centre for Tuberculosis, NICD: - Dr Shaheed V Omar, Dr Farzana Ismail - Data Analysis: - Dr Naseem Cassim, Silence Ndlovu - Wits Diagnostic Innovation Hub - Wits Diagnostic Innovation Hub R&D team: - Anura David, Prof Lesley Scott - Commercial collaborators: - Cepheid, Roche, Becton Dickinson, and others - NHLS Executive Team and CEO: Prof Koleka Mlisana - NHLS, TB-Subcommittee of the Microbiology Expert Committee - NHLS Wider TB-Forum - NHLS TB-NAAT and TB-culture laboratories - · National and Provincial Departments of Health - National TB Program