Use of Hydrogen Peroxide and UV to Degrade GTC in VL/EID Liquid Waste, Uganda experience

Joel Peter Opio Lab System Branch, CDC-Uganda

July 2024

Presentation Layout

- National guiding Documents on liquid waste management
- National Lab network
- Central Public Health Laboratories (CPHL)
- . VL and EID Centralized testing Volume
- . Waste Burden (Solid & Liquid)
- Alternative Liquid Waste Management Method

National Healthcare Waste Management Documents

1. National policy for Healthcare waste management policy.

- Since 2004, currently under review by MoH.
- <u>"POLICY OBJECTIVES 5.3.4:</u> To ensure that liquid chemical waste and potential wastewater from isolation wards are treated separately".
- 2. National implementation guidelines for Healthcare waste.
- Under review my MoH.
- <u>Effluents</u>: Effluents and more particularly, effluents from isolation wards and medical diagnostic laboratories, should be considered as hazardous liquid waste that should receive specific treatment before being discharged into the sewerage/drainage system

The documents don't provide specific procedures for treatment of GTC in liquid waste

The national Specimen Transportation and Results Network through the Hubs system

vehicles, where no Posta services are available.

Central Public Health Laboratories (CPHL)

- CPHL is located about 10kms from Kampala City.
- CPHL comprises of the:
 - National VL, EID & HIVDR Lab (Accredited to ISO 15189),
 - National Microbiology Reference Lab (Accredited to ISO 15189),
 - National Equipment Calibration Laboratory (Accredited to ISO 17025)
 - Sickle cell & malaria Reference Lab,
 - PT panel preparation Lab & National biorepository, among others
- Generates over 1000 Kgs of waste daily

ISO 15189 Accredited VL/EID & HIVDR Lab

VL and EID Centralized testing Volume

Tests over **1.5 million** VL & EID tests annually

QUARTERLY VL AND EID LAB TEST OUTPUT 2022, 2023

EID

VL and EID Molecular Platforms

Equipment	Number	
Roche Cobas 8800	2	
Abbott Alinity	7	
Hologic	3	

Waste Burden (Solid & Liquid)

- Increased VL/EID waste generation due scale-up in 2018.
- About 12 tones per month

- About **100,000 total** liters per month.
- **12,000** liters from VL/EID platforms/month

Material Safety Data Sheet (MSDS)

3

	Sigma-Aldrid	ch.		www.sigmaaldrich.com		
SA	FETY DATA SH	IEE	т	Version 8 Revision Date 12/30/202 Print Date 01/20/202		
SEC	TION 1: Identification	of th	e substance/mixture and of the co	mpany/undertaking		
۳.	Product identifiers					
	Produce name		isitahidibitani tinocyanate fo	r synthesis		
	Product Number	1	8.20613			
	Catalogue No.	1	820613			
	Brand Index-No	1	Millipore 615-030-00-5	• •		
	CAS-No.	1	593-84-0			
1.2	Relevant identified u	ses	of the substance or mixture and use	s advised against		
	Identified uses		Chemical for synthesis	-		
1.3	Details of the supplie	r of	the safety data sheet			
	Company	:	EMD Millipore Corporation 400 Summit Drive BURLINGTON MA 01803			
			UNITED STATES			
	Telephone	1	+1 800-645-5476			
1.4	Emergency telephone					
	Emergency Phone #	:	800-424-9300 CHEMTREC (USA) +1-7 527-3887 CHEMTREC (International) 2 Hours/day; 7 Days/week	03- 4		
	• •					
SEC	TION 2: Hazards identi	fica	tion			
2.1	Classification of the s	ubs	tance or mixture			
	GHS Classification in	acc	ordance with 29 CFR 1910 (OSHA H	CS)		
	Acute toxicity, Oral (Ca Acute toxicity, Inhalatic Acute toxicity, Dermal (Skin corrosion (Categor Serious eye damage (C Short-term (acute) aqu Long-term (chronic) ag	tego on (C Cate y 10 ateg atic uatic	ry 4), H302 stegory 4), H332 sgory 4), H312), H314 ory 1), H318 hazard (Category 3), H402 hazard (Category 3), H412			
	For the full text of the H	I-Sta	tements mentioned in this Section, see	Section 16.		
2.2	GHS Label elements	incl	uding precautionary statements			
	Rictogram					
	riccogram					
			v v			

The Liquid Waste Burden Cont.....

12,000 liters translates into about 120 drums of water to illustrate

 Ferried every 2 weeks by an external service provider at the cost of USD 2000 per collection.

- The service provider disposes the waste at the military facility.
- Final disposal site at the military facility is highly restricted thus unknown to the central lab
- Disposal such volumes can't be ignored

The liquid waste is stored in an

underground containment tank

Alternative Liquid Waste Management Method

The quest for control of final disposal of GTC containing liquid waste and the cost associated to its disposal prompted us to look for a sustainable solution.

The Objectives

- Destroy cyanide in the liquid waste generated by VL/EID testing platforms.
- Gain control of the final disposal and avoid reliance on an external entity including possible litigation as a result inappropriate management.
- Cut down on the increasing costs dependent on the oil prices and service providers

Justification

- The quantity of the liquid waste generated (400 liters per day), and risk of GTC as highlighted in the MSDS for VL/EID reagents required attention.
- Characterization confirmed presence of cyanide in the liquid waste and other stubborn materials (recalcitrant).
- The analysis of the samples was done in an accredited lab called Set point, South Africa.

Justification Cont.....

- The initial tested conduct indicated presence of total cyanide levels in the range of 400mg/l - 700mg/l.
- This is way above the NEMA recommended maximum levels of 0.1 mg/l
- In addition, there was contamination due to minerals such as: chromium, selenium, manganese, Nickel and Titanium in micrograms, which can be a threat if bioaccumulated in the environment.

Sample nar	ne						hour		hour
Sample dat	e and time			South African	2022/09/07	2022/09/07	2022/09/07	2022/09/07	2022/09/07
			Ī	National	Glass	Glass	Glass	Glass	Glass
Sample con	tainer description			Drinking Water	Container	Container	Container	Container	Container
Submission	date			Standard (SANS	2022/09/16	2022/09/16	2022/09/16	2022/09/16	2022/09/16
			1	241:2015) Recommended	Effluent	Effluent	Effluent	Effluent	Effluent
Sample typ	e			operational	water	water	water	water	water
				limit	WCT/23/02	WCT/23/02	WCT/23/02	WCT/23/02	WCT/23/02
Set Point II)				33-0001	33-0002	33-0003	33-0004	33-0005
Visual Inspe	ection				N/A	N/A	N/A	N/A	N/A
Method no	Determinand		Unit						
		(Chemical Pro	operties and	l Paramet	ers			
M862	Chemical Oxygen Dema	and (COD)	mg/L	-	85400	63800	66000	50000	52000
M860	pН		-	≥5.0 to ≤9.7	5.34	3.27	2.85	2.69	2.33
#	Total Cyanide		mg/L	-	701	415	359	279	455
Diance Net			N/A: Not ann	licable	DTE : Bocult	to follow			

Non SANAS accredited methods

Results only relate to the samples tested and are reported on an "as received" basis, unless otherwise specified. This report may not be reproduced, except in full, without the written approval of Set Point Laboratories; Results are subject to uncertainty of measurement, which are indicated on the enclosed information sheet. While every effort is made to provide analysis of the highest accuracy, the liability of Set Point Laboratories is restricted to the cost of the analysis.

The Intervention

- The literature review indicated that Cyanide could get eliminated by advanced oxidation approaches involving:
 - Ozonation/UV,
 - Hydrogen peroxide/UV
 - Incineration
 - Plasma arc,
 - Bioremediation

Review Article

Biological treatment for the degradation of cyanide: A review

Angélica Alvillo-Rivera ^a, Sofía Garrido-Hoyos ^{b,*}, Germán Buitrón ^c, Pandiyan Thangarasu-Sarasvathi ^d, Genoveva Rosano-Ortega ^e

ABSTRACT

^a Universidad Nacional Autónoma de México-Campus Morelos, México ^b Instituto Mexicano de Tecnologia del Agua, México ^c Universidad Nacional Autónoma de México-Campus Juriquilla, México ^d Universidad Nacional Autónoma de México - Facultad de Química, México ^e Universidad Popular Autónoma del Estado de Puebla, México

ARTICLE INFO

Article history: Received 10 August 2020 Accepted 7 March 2021 Available online 24 March 2021

Keywords: Cyanide Mining Tailings Biodegradation Alkaliphilic microorganism Given that mining is considered to be an essential activity for Mexico's industrial development, cyanide has been increasingly used to recover precious metals such as gold and silver. Along with that arises the need to develop new technologies to treat the wastes (mining tailings). In addition to their high cyanide content, metal and other contaminants that are found in tailings also present a problem. As a result, conventional (physicochemical) strategies have been developed to reduce contamination from tailings, nonetheless, these have high operating costs and generate unwanted by-products. For this reason, studies have begun to focus on non-conventional strategies to treat free cyanide and cyanide complexes such as fungi, bacterial consortia, and pure bacteria. These are important because of the mechanisms involved in degrading or modifying contaminants at neutral to high pH levels, which convert contaminants into non-hazardous products. The ability of microorganisms to grow at an alkaline pH prevents HCN volatilization. These studies have been performed at the laboratory level using two types of microbial binding suspended biomass and immobilized biomass. They have used both natural (granite rock, citrus peels, cellulose, gravel) and synthetic (stainless steel, geotextiles, alginate, plastics) packing material, as well as reactors with different types of flow, namely, batch and continuous

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The Intervention Cont.....

Ozonation/UV

- Involves a big and often
 complicated kit particularly in
 ozone generation.
- Require air compressors, air filters, cooling water, need for a lagoon

system designed to cover most needs in disinfection and treatment in versatile environments and industries such as large breweries, pharmaceutical production and process manufacturing.

RENA Vivo C-series

The C-series is our highest capacity ozone system of the Vivo range, designed to solve complex treatment challenges such as break-down of pharmaceutical residues and complex substances. It is a perfect solution for ensuring large flows and volumes of high quality process water supply. It is delivered with an integrated oxygen generator or external oxygen supply.

The Intervention Cont.....

Hydrogen peroxide /UV

- Selected as the method of choice.
- The requirements for set up are less elaborate compared to the other methods.
- Can be accommodated in small space,

LabClean Machine (Enviolet[™])

Hydrogen peroxide/UV Method - Key Elements

3. Procedures

1. Strategy

- GTC waste is treated with Hydrogen peroxide in presence of UV Light at ambient temperature and pH for a period of 1-2 hrs. The process is performed under a fume hood to exhaust any hazardous emissions that may have been released inadvertently.
 - Checks are carried out to establish that cyanide is degraded to undetectable levels

4. Outcome

- Results from the accredited Set point a sub subsidiary of Wear Check, South African based lab reveled that the total cyanide present in the treated product was below
 0.07mg/l
- The concentration is way below the NEMA acceptable standard for disposal which is 0.1mg/l

- Breakdown the nitrile bond in cyanide
 This is the bond which is
- This is the bond which is central to cyanide toxicity & resilience in GTC.
- When this bond is broken, the byproducts are friendly

2. Set up

- Lab clean plus accessories
- Cyanide testing kit
- Ph tester
- Temperature Meter
- Hydrogen Peroxide
- Fume Hood

The Hydrogen Peroxide/UV Method Cont...

VL/EID Liquide waste

Labclean

Final product safe to support life

The Hydrogen Peroxide/UV Method Cont... 🔅

Results

Parameter	Units	Waste water effluents	Maximum Permissible Limit*
Surfactants (mol)	mg/L	2748	15
Ammonia Nitrogen	mg/L N	<0.10	
Chamical Oxygen Demand (COD)	mg/L	40750	70
Chlarida	mg/L	12957	250
Conductivity	mS/m@ 25°C	3490	1000
Conductivity	mg/L	0.31	2
Figuriae	mg/L	<0.10	
Free chiornic	mg/L	<0.05	0.1
Free Cyanide	mg/L N	<0.10	10
Nitrate & Nitrite Nitrogen	mg/J	3329	10
Oil & Grease	mg/L P	0.12	5
Orthophosphate	mgror	4.89	5.0 -8.5
pH	Inall	<0.01	0.5
Phenols	mail	<3.00	500
Sulphate	ung te	368	01
Total Cyanide	mg/t.	500	
Total Suspended Solids	mg/L	104	
Silver (Ag)	µg/L	2.44	0.5
Aluminium (AI)	mg/L	<0.15	0.5
Automation (Al)	mo/L	4.00	0.1

Easting Mater Laboratory	Wonkers Lape #
El: Sugar Centerell	Init 25, The Arm
Unigercadeve Sciences Park	Capiture Horn, 8
phono-desig 15:10	Capit State, 7540
8 40 13 80 400 9 3aget@exaviol.texe	A reprint wo an

nyeler Lakentytorly erver 3, suurikeenhelt	Noal Office An. 1 The Terrant, Waynam Office Fail, Westwile, EastWate Fails, 1625
	Soath Mice PERMISSING MICHAEL, Kendersman, Jette
	4. 127 51 100 SHIP

it designs of Specifyle Televises (Pip) (b), and the Period Science (Pip) (b).

For Attention:	Joseph Mugrya	Report number:	WAT/23/1327
Customer:	Paribus Investments Uganda Umited	Report issue date:	2023/04/26
Postal address:	PO Box 5602, Kampala Jinja Rd, Plot 4, Eagen Ho	Date Completed:	3023/04/26
Tel number:	256 772 991894	Order no:	000

Certificate Of Analysis

Sample no	and .		TWW	WW1	WW 2	
Sample da	£4		3023/02/35	3023/02/25	3033/03/28	
Sample of	mainer description		Gass Bottle	Giaco Bottle	Giass Bottle	
Submissio	n date	- 10 - 13	3023/04/14	3023/04/14	2023/04/14	
Sample ty	pe -		Water	Water	Water	
Set Point	0		WA5/21/1317 0005	WA1/23/1327 0002	8003	
Visual imp	rection		8/8	A/A	N/K	
Method	Determinand	UNR				_
10. se	35,000 BBO	Chemical Prop	erties and Par	ameters		
MMGG	PH		2.73	4.05	5.43	
	Total Cusnide	7.87	+0.07	-40.07	40.07	

Please Note:

"Sub-contracted Analysis

Non LANA'S Accredited methods

Results only relate to the samples tested and are reported an an "as received" basis, unless otherwise specified This report may not be reproduced, except in full, without the written approval of Set Point Laboratories; Results are subject to uncertainty of measurement, which are indicated on the enclosed information sheet. While every effort is made to provide analysis of the highest accuracy, the fability of Set Point Laboratories is restricted to the cost of the analysis.

877 | Result to follow

Comment:

Nthusteeni Mabidi (Report Compiler) Mose's Letaka **Technical Signatory**

Tests marked "Non SASKS Accedited methods", as well as any comments, againstin ar interpretations papersed in this report are not

Treated Product

- In addition to proving that cyanide was degraded to undetectable level, the treated waste was analyzed for presence of unintended intoxicants oxidation products.
- Lab results indicated none

Method of Analysis

Analysis of the sample done using the FTIR scanning method.

Results of Analysis

The mean analysis values are as below,

Test/Parameter	Results				
	SAMPLE A GE 526/2023	Min. Score 850			
	Human skin	703			
	PVAL, Polyvinyalcohol	658			
FTIR SCREENING	Protein (Human Hair)	623, 609			
	Titanium Dioxide (Rutile)	616, 609			
	Polyacrylamide-1(non-Ionic)	604, 589			
	Polyacrylamide-2 (low Carboxyl Content)	591			

Remarks

- 1. The scores were lower than the minimum score (850) indicating that the above functional groups (reactive) were very low or didn't match the given sample.
- 2. Results relate to samples analyzed and are reported as on received basis.

Acknowledgements

- 1. NHLDS-MoH-Uganda
- 2. **PEPFAR**
- 3. CDC-Uganda
- 4. CDC Atlanta ILB
- **5.** Paribus Investments
- 6. Setpoint Laboratories, South Africa
- 7. Makerere University
- 8. Government Analytical Lab

