

Progress in scale up of viral load testing among countries participating in the LabCoP

LabCoP Team

ASLM

Laboratory Community of Practice Project (LabCoP) The Laboratory System Strengthening

LabCoP Achievements

Increased number of Participating countries

- Enrolled 22 countries
 - 12 Anglophone
 - 6 Francophone
 - 2 Lusophone

Dissemination and sharing of best practices

- >153 ECHO Sessions
- >350 connections

•

- WhatsApp group with >256 members
- >30,000 exchanges
- 5 annual meetings

Country Support Activities

- >80 standardized country assessments and development of action plans
- >30 technical country visits
- Piloted laboratory Leadership training in 2 countries
- >5 South-to-South engagements

Publications & Guidance documents

- 7 recipes in Cookbook
- >6 peer-reviewed articles
- 14 newsletters

Number of standardized assessments conducted since 2017...

Each country receives an individual report highlighting

- Gaps \rightarrow dashboards
- What is the next step that the country should achieve? \rightarrow annexes

Interventions using the best practices identified (LabCoP) → workplans

Lab

CoP

<u>ee 99</u>

assess laboratory systems functions underlying the HIV viral load cascade

AFRICAN SOCIETY FOR LABORATORY MEDICINE HIV VL cascade self assessment tool

Qualitative section

- Demand creation
- Specimen collection/transport
- HIV VL testing
- Waste management
- Supply chain
- Workforce
- Results utilization
- Leadership and management

Quantitative section

- Number of reporting HIV VL sites
- First HIV VL cascade
 - #Eligible for VL
 - #Receive a VL
 - #VL suppression

• Second HIV VL cascade

- #EAC
- #Second VL

Applied every year

HIV VL cascade self-assessment tool: qualitative section

Country A - 2022

Domains of the HIV VL cascade	Indicators	Indicator score	Level of capacity of the domain	Score change from 2021	
1. Demand Creation for HIV VL testing	1.1 National strategy to increase VLT demand	3			
	1.2 National HIV VLT awareness campaign for PLHIV	3	Strong technical or	Stable	
	1.3 National HIV VL strategy for stakeholders	4	managerial level		
	1.4 National training programme for clinician on importance of VL on	4			

Stage 1

Foundational level

Stage 2

Moderate

level

Stage 3

Strong technical or managerial level

Indicates lowest score within field

Stage 4

Advanced

level

11 founder LabCoP countries

Managerial to advanced

Foundational to moderate

National Viral load testing data source		2020		2021			2022				
# of VLT sites in the country			?			?			?		Quantitative
# of VLT sites reporting			n (%)			n (%)			n (%)		
Cascade of Routine Viral Load Testing and P	<mark>Key Inc</mark>	dicato	ors to Track	Virally Suppres	sed F	Patients (firs	t cascade)	-			assessment
# of PLHIV in the current year (1)	1	•	1,315,646		•	1,277,584		•	1,301,402		
# PLHIV currently on ART	2	\circ	1,146,532		0	1,184,901		\circ	1,188,636		
# PLHIV currently on 1st line ART regimen (N)	3	0	1,100,932		0	1,141,925		0	1,139,648		No Data Available
# PLHIV on ART eligible for a routine VL test	4	\circ	1,095,549		0	1,141,925			1,153,516		Data
# PLHIV on ART who received a routine VL test	5	•	622,422	56. 8%	0	722,404	63.3%	•	848,648	73.6%	
# PLHIV on ART who are Virally Suppressed (<1,000 copies/ml) on routine testing	6	0	528,902		0	642,467		0	795,282		
# Virally suppressed PLHIV referred to a less intense model of HIV care	7	0			•			•			
VL cascade for patients with a non-suppress	sed VL	test	result (VL>1	000 copies/mL)	(2nc	d cascade)					
# PLHIV on AKT with a VL ≥1,000 KNA copies/ml	1b	0	93,520		0	79,937		0	53,366		1
# PLHIV on ART with a VL ≥1,000 RNA copies/ml who received Enhanced Adherence Counseling (EAC) :	2b	•		NA	•		NA	•	30,265	56.8%	
# PLHIV on ART with VL ≥1,000 copies/ml who received a follow-up VL testing within 3-to-6 months of EAC	3b	•		NA	•		NA	•	17,201	56.8 /6	
# of PLHIV who re- suppressed at follow-up VL testing	4b	0			•			0	11,157		
# PLHIV on ART with two consecutive VL test results of ≥1,000 copies/ml	5 b	•			•			•	6,044		
# PLHIV on ARTwho SWITCHED to a 2nd or 3rd line ART regimen	6 b	0			0			0	3,680		

.

Lab

CoP

èè dd

GHSA LabNet scorecard

assess laboratory network and systems functions

Measuring laboratory networks and systems functionality:

- Clinical functions
- Public health functions
- One health approach
- Routine and emergency
- Limited resources
- Equitable access
- Cost effectiveness of services
- Integrated services
- Etc...

Applied every 2-3 years

Country A - 2022

Capacités	Composants	Indicateurs	Score de l'indicate ur	Score du composant	Progrès par rapport à l'évaluation précédente
	ans	Sécurité sanitaire mondiale dans les politiques et plans nationaux de laboratoire	2	1	
	et pla aux	RSI dans les politiques ou plans nationaux de laboratoire	4		
ques ation		Opérationnalisation des capacités du RSI	3	Niveau modéré	Augmenté
	Politi	Mécanisme d'octroi de licence pour les laboratoires	2	3	(• 1)

Progress in % advancement of individual indicators against the highest standard

Stage 0 Absence of key attributes

level

Stage 1 Foundational

level

Stage 2 Moderate level

Stage 4 Strong technical Advanced or managerial level

Stage 5 Attainment of international standards

Indicates lowest score

within field

AFRICAN SOCIETY FOR LABORATORY MEDICINE HOW do we measure progress?

Integration readiness assessment tool

Lab

CoP

ėė 99

Assess the readiness of laboratory system to deliver integrated diagnostic services

Integration assessment tool

Qualitative section

- Preparation and planning
- Network design
- Support systems
- Data for decision-making

Applied every 2-3 years

Lab

CoP

<u>ee 99</u>

AFRICAN SOCIETY FOR LABORATORY MEDICINE

Integration assessment

Country A - 2022

Capability	Component	Indicator	Indicator score	Level of capacity of the component
		1.1.1 integration in health policies	2	
	1.1 Policies, guidance and regulations	1.1.2 National essential diagnostic list	1	Foundation level
		1.1.3 National procedures to adoption of new tests on approved platforms	1	

Percentage advancement of individual indicators against the highest standard

Advancement towards international standard across 10 components

Stage 0

Absence of

key attributes

Stage 1

Foundational

level

Stage 2

Moderate

level

Stage 3

Strong technical

or managerial

level

Stage 4

Advanced

level

Stage 5

Attainment o

internationa

standards

Indicates

lowest score

within field

17 LabCoP countries

AFRICAN SOCIETY FOR LABORATORY MEDICINE HOW do we measure progress?

Laboratory mapping tool

Determine where laboratory capacity is located

The LabMap tool

Sections of the tool

- Laboratory profile
- Laboratory Staffing information
- Infrastructure
- Laboratory departments and testing menu
- Laboratory Quality Management System
- Laboratory Connectivity
- Linkages to laboratory networks
- Biosafety and Biosecurity
- Major Equipment
- Supply chain management

LabMap analysis

N = 270 Laboratories

Additional analyses for countries with complete LabMap data

Summary of human resources	capacity by	[,] laboratory	tier	level
----------------------------	-------------	-------------------------	------	-------

Workforce*#	Tier 1 (n%)	Tier 2 (N%)	Tier 3 (N%)	Others	Total
Phlebotomists	0 (0%)	312 (59%)	217 (41%)	NA	529
Lab technologists	147 (22%)	244 (37%)	264 (40%)		655
Lab assistants or microscopists	31 (20%)	56 (36%)	68 (44%)		155
Lab technicians	56 (24%)	76 (32%)	105 (44%)		237
Lab scientists	132 (23%)	208 (36%)	235 (41%)		575
Pathologists	0 (0%)	13 (46%)	15 (54%)		28
Medical Microbiologists	0 (0%)	151 (35%)	284 (65%)		435

Heat map of detection capacity for priority pathogens

Pathogen/Disease	Serology	Viral load	Genotype	Isolation by	Neutralization
				cell culture	assay
Ebola Virus		1	2		
Rift valley fever virus			1		
Lassa fever			2		
Congo crimean hemorrhagic fever			2		
Dengue virus	1	1	3		
Zika virus	1	1	2		
Chikungunya	1	1	2		
Yellow fever	1	1	2		

So, what do we learn?

Results from the country assessments provide useful insights in prioritizing laboratory systems that require strengthening Country assessments and workplan activities informed our major laboratory priorities for inclusion in PEPFAR COP and Global Fund funding requests

How can we improve the process?

- LabCoP has established a useful system allowing countries to document progress (or lack thereof) in laboratory system capacity
- There is enhanced collaboration between the laboratory governance and the programs hence improving the lab-clinic interphase
- Increased access to national data facilitates evidenced-based improvement of national testing systems

Thank you LabCoP !!

