

Evaluation of the Xpert® MTB/XDR and possibilities of integration into the national diagnostic algorithm – a South African perspective

Shaheed V Omar (PhD)

Centre for Tuberculosis National TB Reference Laboratory National Institute for Communicable Diseases, South Africa

BACKGROUND

- In recent years, the global rise and spread of multi-drug resistant (MDR) (resistant to first-line agents rifampicin and isoniazid) and extensively drug resistant (XDR) tuberculosis (MDR with additional resistance to fluoroquinolones (FQ) and second-line injectable agents (SLI)) has disadvantaged control efforts.
- Adequate control of XDR TB requires rapid diagnosis to improve patient outcomes and reducing further transmission.
- In 2018, the WHO had endorsed the Short Course regimen and the Shorter, all-oral, Bedaquiline containing regimen reducing treatment times to 9-12 months from the standard 18-24 months.
- As both FQ's and SLI's are important components of this regimen it is critical to report resistance to these drugs as early as possible to ensure adequate patient management.
- Current practice for susceptibility testing requires either phenotypic based methods (the current standard for universal DST) or molecular based methods, if the required infrastructure and skill sets are available.
- Each methodology comes with its own caveat
 - Phenotypic methods take between 4 8 weeks to report
 - Molecular methods despite being faster are restricted to limited targets for inferring drug resistance and performance

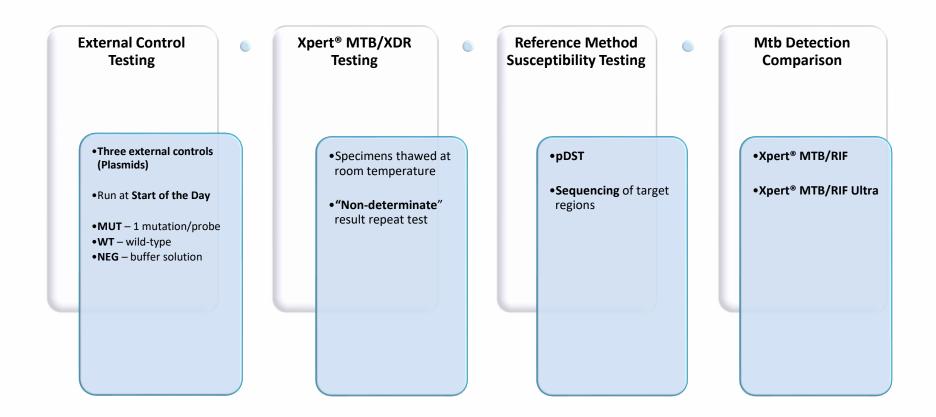
- The WHO listed a TB drug-susceptibility test that can detect the most common first and second line drugs as a high-priority with the following product profile;
 - fast
 - low technical skill
 - minimal infrastructure requirement
- In response, Cepheid has developed the Xpert[®] MTB/XDR assay capable of detecting resistance to;
 - Isoniazid (low & high)
 - Fluoroquinolones (low & high)
 - Second Line Injectable agents
 - Ethionamide

AIM & OBJECTIVES

AIM - The performance of the Xpert[®] MTB/XDR* assay was assessed relative to the standard reference methods for MTB detection and drug resistance detection (i.e., phenotypic drug susceptibility assaying (pDST) and sequencing) and to the on-market Xpert[®] MTB/RIF and Xpert[®] MTB/RIF Ultra assays.

OBJECTIVES

- To evaluate sensitivity and specificity for drug resistance detection relative to pDST and sequencing independently and as a composite reference standard
- To report the ability of the Xpert[®] MTB/XDR assay to differentiate between low and high level INH resistance
- To determine Positive Percentage Agreement (PPA) and Negative Percentage Agreement (NPA) of the Xpert[®] MTB/XDR assay for the detection of MTB relative to the Xpert[®] MTB/RIF and Xpert[®] MTB/RIF Ultra assays.


STUDY SITE: Centre for Tuberculosis, National TB Reference Laboratory (WHO TB SRL), NICD/NHLS, South Africa

SAMPLES TYPE: Frozen archived de-identified concentrated sputum specimens pre-characterized phenotypically and genotypically for drugs of interest (samples that have previously been thawed were excluded)

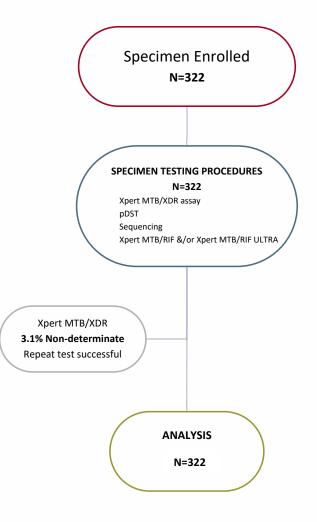
SPECIMEN TESTING PROCEDURES

STATISTICAL ANALYSIS

• Sensitivity and Specificity of the Xpert[®] MTB/XDR assay for detection of resistance

Acceptance Criteria

Target	Sensitivity Requirement by Reference Methods	Specificity Requirement by Reference Methods			
Isoniazid	≥ 85%	≥ 95%			
Flouroquinolone	≥ 85%	≥ 95%			
Amikacin	≥ 80%	≥ 95%			
Kanamycin	≥ 80%	≥ 95%			
Capreomycin	≥ 60%	≥ 95%			
Ethionamide	≥ 65%	≥ 95%			


 Positive/Negative Percentage Agreement (PPA/NPA) for detection of *Mtb* compared to Xpert[®] MTB/RIF assays

Acceptance Criteria – PPA \ge 95% & \le 5.0% non-determinate rate

RESULTS

Performance of Xpert MTB/XDR Test vs. Culture in Smear Negative, Smear Positive, and Overall, for MTB Detection

				Culture						
			Positive Negative Total							
		AFB Smear +	AFB Smear -	Overall Culture +	Overall Culture -					
Xpert MTB/XDR Test	MTB Detected	220	72	292	0	292				
	MTB Not Detected	1	4	5	25	30				
	Total	221	76	297	25	322				

Performance in *Culture Positive Smear Positive group*: Sensitivity: 99.5% (95% CI: 97.5, 99.9)

Performance in *Culture Positive Smear Negative group*: Sensitivity: 94.7% (95% CI: 87.2, 97.9)

Performance Overall: Sensitivity: 98.3% (95% CI: 96.1, 99.3)

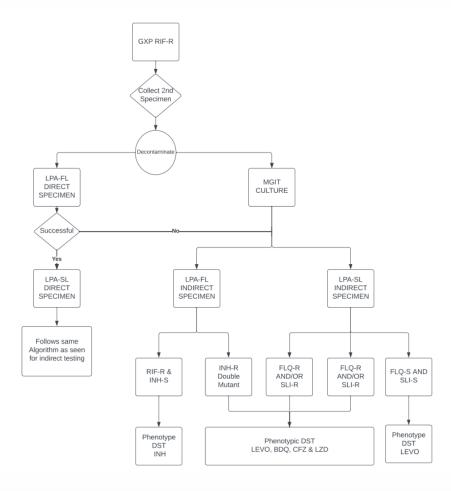
Specificity: 100% (95% CI: 86.7.100)

Performance of Xpert MTB/XDR Test vs. Xpert MTB/RIF Ultra Test for MTB Detection

		Xpert MTB/RIF Ultra						
MTB Detected MTB Not Detected								
	MTB Detected	207	0	207				
Xpert MTB/XDR	MTB Not Detected	1	14	15				
	Total	208	14	222				
	Positive Pe	99.5% (95%CI: 97.3	3-99.9)					
	Negative Pe	100.0% (95%CI: 78	3.5-100.0)					

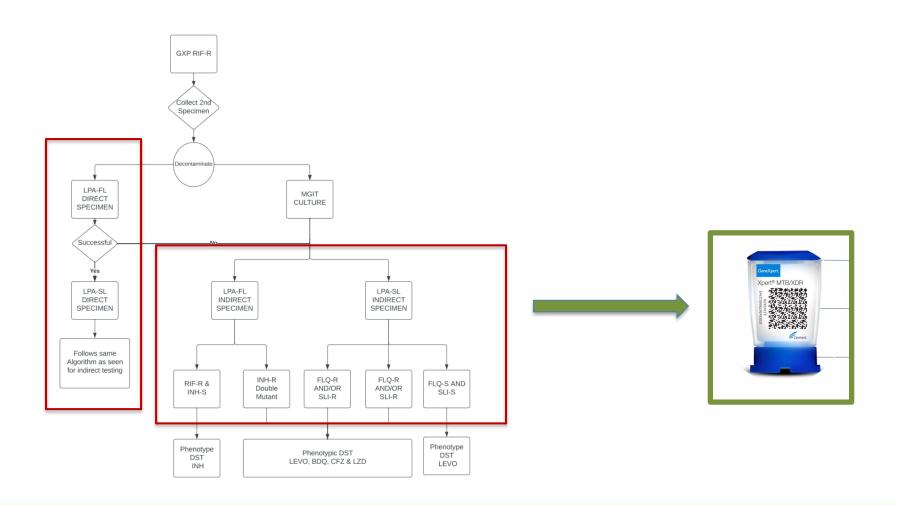
Performance Summary of Sputum Specimens Drug Resistance Detection for Xpert MTB/XDR Test Compared to pDST

Reference	Target	Total	ТР	FN	TN	FP	Sensitivity (%)	Specificity (%)
	INH	291	127	13	149	2	90.7	98.7
	FLQ	231	58	6	167	0	90.6	100
- DCT	АМК	228	50	2	176	0	96.2	100
pDST	KAN	166	22	4	140	0	84.6	100
	САР	167	21	4	142	0	84.0	100
	ETH	230	75	41	112	2	64.7	98.2



Performance Summary of Sputum Specimens Drug Resistance Detection for Xpert MTB/XDR Test Compared to Sequencing

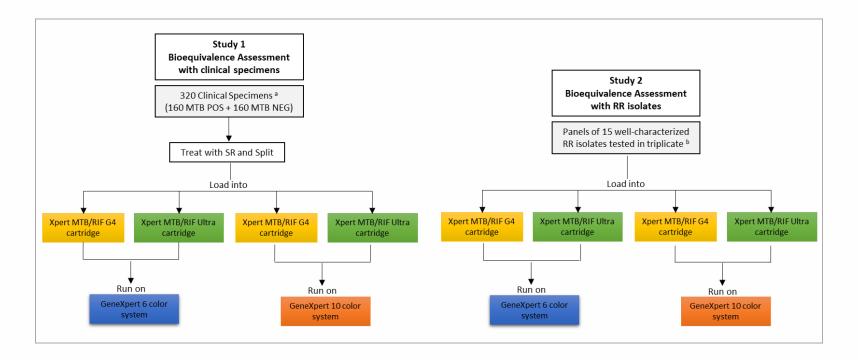
Reference	Target	Total	ТР	FN	TN	FP	Sensitivity (%)	Specificity (%)
	INH	291	128	2	160	1	98.5	99.4
	FLQ	289	58	3	228	0	95.1	100
Soquencing	АМК	286	50	1	235	0	98.0	100
Sequencing	KAN	286	51	1	234	0	98.1	100
	САР	286	49	1	236	0	98.0	100
	ETH	292	81	2	209	0	97.6	100



Implementation Strategies

- **STRATEGY 1:** Incorporating Xpert MTB/XDR into the existing DR-TB Reflex as a replacement strategy for LPAfl and LPAsl testing at TB-culture laboratories as an initial implementation phase
- **STRATEGY 2:** Collection of a second specimen for Xpert MTB/XDR testing should Xpert MTB/RIF Ultra detect MTB and rifampicin resistance: Implementation across all Xpert MTB testing laboratories
- **STRATEGY 3:** Processing Xpert MTB/XDR from residual SR-treated Xpert MTB/RIF Ultra as a reflex where MTB has been detected: Implementation across all Xpert MTB testing laboratories – minimum sample volume 2mL or two sputum upfront
 - Detect INH-MONO resistance

Current Xpert DR-TB reflex algorithm (South Africa)



Infrastructure considerations

Bio-equivalency evaluation of the GeneXpert 6 colour optic channel system and GeneXpert 10 colour optic channel system for TB and RIF resistance detection by the Xpert MTB/RIF G4 and Ultra assays at WHO Supranational Reference Laboratories

Overview of Study 1 & 2 procedures

MTBC detection by Ultra on GXP10 versus GXP6 system

		МТВС	MTBC Culture negative				
			GXP10				
	Ultra result	MTB +	MTB -	Total (%)	MTB +	MTB -	Total (%)
CYDC	MTB +	149	1	150 (94,3)	1	0	1 (0,6)
GXP6	MTB -	3	6	9 (5,7)	1	152	153 (99,4)
	Total (%)	152 (95,6)	7 (4,4)	159 (100)	2 (1,3)	152 (98,7)	154 (100)

98,4% agreement for MTB detection with a Cohen's k of 0.97

- Discordance mainly related to TRACE results (4/5) and 1 Very Low
 - 3 TRACE detected by GXP 10 only
 - 1 TRACE detected by GXP 6 only
 - 1 Very Low detected by GXP 10 only

Rifampicin resistance detection by Ultra on GXP10 versus GXP6 system

	Rifampicin resistant					Rifampicin susceptible				
	GXP10						GXF	P10		
	Ultra result	RR+	RR -	RI	Total (%)	RR+	RR -	RI	Total (%)	
	RR +	53	0	1	54 (100)	0	1	0	1 (1,25)	
GXP6	RR -	0	0	0	0	0	77		78 (97,5)	
	RI	0	0	0	0	0	1	0	1 (1,25)	
	Total (%)	53 (98,1)	0	1 (1,9)	54 (100)	0	79 (98,75)	1 (1,25)	80 (100)	

97% agreement for RIF resistance detection with a Cohen's k of 0.94

• Discordance mainly related to Rif Indeterminate calls by both platforms

Conclusions

- The sensitivity and specificity for resistance prediction met the acceptance criteria for all drugs, sensitivities were >90% for all drugs except Ethionamide due to it being limited to a single target (shared with INH resistance prediction *inhA promoter*)
- The performance against the pDST reference was marginally lower compared the Sequencing reference. This may be due to pDST being a 'Imperfect Reference' as most of the discordance resolved by sequencing were in agreement with the Xpert[®] MTB/XDR assay
- The Xpert[®] MTB/XDR assay was accurate in differentiating resistance levels to Isoniazid having a direct impact on patient treatment regimen
- Concordance between the Xpert[®] MTB/XDR assay and Xpert[®] MTB/RIF Ultra 99.5% this therefore translates to being able to reflex XDR testing directly off an Xpert[®] MTB/RIF Ultra resistant sample with a high probability for a successful result

- When testing compatibility for the Xpert ULTRA with both the GXP 6 and GXP 10 color modules on clinical sediments, Xpert MTB/RIF Ultra was highly concordant for MTBC detection, with an overall agreement of 98.4% between the two systems.
- Xpert MTB/RIF and Ultra were also concordant for RIF-resistance detection in clinical specimens, with 97.0% agreement, between GXP6 and GXP10.
- When testing panels of RIF-resistant MTBC isolates, Xpert MTB/RIF Ultra was concordant for RIF-resistance detection, with 97,8% agreement, between GXP6 and GXP10.
- Our findings support manufacturer claims of the GeneXpert 10 color system having backward compatibility with the Xpert MTB/RIF and Ultra assays.

- Future use of this assay, from a "South African" or any TB programme perspective where Xpert®MTB/RIF or Xpert® MTB/RIF Ultra is the primary diagnostic for TB investigation - all RIF resistant specimen are reflexed for further molecular or pDST investigations – the Xpert® MTB/XDR can provide resistance predictions in real-time for up to 6 additional drugs hours apart from the initial Xpert® MTB/RIF or Xpert® MTB/RIF Ultra assay result using the same buffered sample (within 4 hours).
- This would replace two independent molecular tests currently used in our laboratory workup, improve laboratory turnaround times from days (median 14 days in SA) to hours and enhance appropriate clinical management, particularly the use of Isoniazid and Fluoroquinolones.
- The Xpert[®] MTB/XDR assay is a fast, robust, sensitive and specific assay for the detection of resistance to Isoniazid, Fluoroquinolones and Second-Line Injectable drugs.
- As the Xpert[®] MTB/RIF assays have changed the landscape of TB diagnostics, this assay would further contribute to the effective management of drug-resistant TB patients affording health care providers the ability to select the most appropriate treatment regimen rapidly.

THANK YOU

