

ADVANCING THE LABORATORY PROFESSION AND NETWORKS IN AFRICA

ANTIMICROBIAL RESISTANCE (AMR) COMMUNITY OF PRACTICE (CoP)

Optimising the use of antimicrobial medicines based on antimicrobial resistance surveillance data in Tanzania

Prof. Jeremiah Seni

Catholic University of Health and Allied Sciences & Bugando Medical Center, Mwanza, Tanzania

National Chairperson – AMSTWG & Member of MCC, Tanzania

Reuben Abednego

National Public Health Laboratory, Dar Es Salaam, Tanzania

GLASS Focal Person, Tanzania

28th October 2022

Outlines

- Tanzania NAP-AMR overview
- NAP-AMR milestones
- NAP-AMR implementation status
 - ✓ Antimicrobial stewardship
 - ✓ Antimicrobial surveillance
 - ✓ From AMR surveillance to optimal use of antimicrobials
- Success stories and Challenges

Tanzania NAP – AMR Overview

Mdegela et al., 2021 Apr 16;10(4):454. doi: 10.3390/antibiotics10040454.

Tanzania NAP – AMR Overview

STRATEGIC OBJECTIVES:

- 1. Create Awareness and Understanding of Antimicrobial Resistance through Effective Information, Education and Communication
- 2. Strengthen the Knowledge and Evidence Based through Surveillance and Research
- 3. Reduce the Incidence of Infection through Effective Sanitation, Hygiene and Infection Prevention Measures
- 4. Optimize the Use of Antimicrobial Agents in Human and Animal Health
- 5. Develop the Economic Case for Sustainable Investment that Takes Account of the Needs of all Countries and to Increase Investment in New Medicines, Diagnostic Tools, Vaccines and other Interventions

Tanzania NAP – AMR Milestones

	2016 Joint externa evaluation (J report	al IEE)	2017 & 20 Enrollment in G antimicrobial resistance and surveillance sy (GLASS)	19 Global use stem	2018-2021 Conducted WHO Point Prevalence Surveys in 16 hospitals (2018-2	2020)	2020-202 Submitted Al to GLASS	21 MR data	2022 Standard Treatment Guidelines for Animal Diseases
2015 Global Antim Resistance Partnership (GARP) Tanza Working Gro Situational a	nicrobial ania up nalysis	2017 National Action Antimicrobial F (NAP- AMR) lau Multisectoral Coordinating C & 4 Technical V Groups	n Plan on Resistance unched + committee Vorking	Submitted year National AMC data to GLASS	O arly	2018-2022 Tripartite AMR Co Self-Assessment S (TrACSS),	untry urvey	2021 Standard Trea Guidelines an Essential Med (STG/NEMLIT) included AWa categorization	atment Id National licines List) 2021 edition IRe n

Antimicrobial stewardship implementation status

Tanzania participated in the Regional Consultation Workshop to rollout the WHO Policy Guidance on Integrated AMS activities in human health, 27 – 28 July 2021 Antimicrobial consumption is expressed as the number of Defined Daily Doses (DDD) per 1000 inhabitants per day.

National Consumption of Antimicrobials in Tanzania: 2017 - 2019

• In Tanzania, antimicrobial importation data are obtained from the TMDA and purchasing data are obtained from MSD and local manufacturers

- ✓ Overall DDD DDD per 1,000 inhabitants per day for all antimicrobials was 80.8 ± 39.35, and decreased from 2017 to 2019.
- Access group of antibiotics dominated (penicillins, tetracycline & TMP-SXT)

Mbwasi et al., Front Pharmacol. 2020 Oct 30;11:585553. doi: 10.3389/fphar.2020.585553.

Prof Jeremiah Seni & Reuben Abednego

- Approx 62.3% of admitted patients were prescribed antibiotics in this PPS (esp in children and surgical patients)
- STG/NEMLIT adherence on prescribing antibiotic was 84.0%
- Antimicrobial therapies guided by laboratory results were surprisingly low !

	Hospital						
Prescriptions by AWaRe	Bukoba RRH, n (%)	BMK ZRH, n (%)	Maweni RRH, n (%)	Mbeya ZRH, n (%)	Sekou Toure RRH, n (%)	Temeke RRH, n (%)	Total, n (%)
Access	131 (99.2)	66(97.0)	63 (96.9)	289 (97.6)	235 (97.1)	208 (99.0)	992 (97.9)
Watch	1 (0.8)	1 (1.5)	2 (3.1)	5 (1.7)	7 (2.9)	2 (1.0)	18 (1.8)
Reserve	0 (0.0)	1 (1.5)	0 (0.0)	2 (0.7)	0 (0.0)	0 (0.0)	3 (0.3)
Total	132 (100.0)	68 (100.0	65 (100.0)	296 (100.0)	242 (100.0)	210 (100.0)	1,013 (100.0)

Seni et al., 2020; BMJ Open. DOI 10.1136/bmjopen-2020-042819 (accepted)

Preliminary Findings on the WHO-Tanzania Ministry of Health Point Prevalence Survey – 2022

- Included patients 592 (59.0% female; 41.0% male)
- Dodoma Regional Referral Hospital (n=194), Mwananyamala Regional Referral Hospital (n=138), and Muhimbili National Hospital (n=260).
 - ✓ Patients on antibiotic were 69.6% (18% encountered one antibiotic, 59% two antibiotics, 16% three antibiotics, 7% ≥four antibiotics
 - ✓ Culture and sensitivity 7.3% (N=592)

Surgical Prophylaxis

- From January to December 2021, a total of 30,295 samples were recorded in WHONET at the National Public Health Laboratory from 9 sentinel sites (versus 8999 samples from July to December 2020):
 - ✓ Male: 15,566 (51.4%)

✓ Children <5y: 10074 (33.3%)

✓ Urine: 13,767 (45.44%) & Blood: 16,529 (54.6%)

- Of these samples, 1,022 (7.4%) urine samples and 2,119 (12.8%) blood samples were excluded because of repetitions and/or contamination
- Therefore, the proportion of UTI and BSI were 27.4% and 16.0%, respectively

AMR surveillance in Tanzania

Hospital	J	uly – De	ecember 2	2020	January – December 2021			
Bloc		ood	Urine		Blood		Urine	
	Ν	%	Ν	%	Ν	%	Ν	%
Bugando	2369	48.9	2317	47.8	5398	37.5	5225	41.5
MNH	857	17.7	1069	22.1	3398	23.6	2060	16.4
КСМС	1271	26.2	751	15.5	3157	21.9	1681	13.4
Mbeya ZRH	99	2.0	221	4.6	722	5.0	682	5.4
MMH-Zanzibar	NA	NA	NA	NA	360	2.5	728	5.8
ВМН	7	2.4	299	6.2	810	5.6	1255	10.0
Maweni RRH	44	0.9	63	1.3	254	1.8	527	4.2
Temeke RRH	16	0.3	I	0.0	59	0.4	157	1.2
Morogoro RRH	73	1.5	123	2.5	252	1.7	275	2.2
Total	4846	100.0	4844	100.0	14410	100.0	12590	100.0

Bacteria species	Number of isolates	(%)
Escherichia coli	1154	33.0
Klebsiella pneumoniae ss. pneumoniae	341	9.8
Staphylococcus aureus ss. aureus	266	7.6
Enterococcus sp.	252	7.2
Citrobacter freundii	165	4.7
Pseudomonas aeruginosa	162	4.6
Acinetobacter sp.	150	4.3
Candida albicans	148	4.2
Others	855	24.5
	3493	100.0

Example of antimicrobial susceptibility patterns of urine priority pathogen (Escherichia coli; N=1154)

STANDARD TREATMENT GUIDELINES AND NATIONAL ESSENTIAL MEDICINES LIST FOR TANZANIA MAINLAND

Hospital-based AMR Surveillance in Mwanza: Preliminary findings from SNAP-AMR Project

–A total of 2316 patients admitted in5 hospitals were enrolled betweenJune 2019 to June 2020

-Blood stream infections : 13.8% (148/1075); Skin and soft tissues infections: 27.8% (119/428) and Urinary tract infections: 21.8% (249/1144)

-Approximately 38% to 54% of these infections were due to *E. coli* and *Klebsiella* pneumoniae complex

-Low resistance of 3rd generation cephalosporin in lower tier like District Hospitals (DH) compared to Regional Referral Hospital (RRH) and Zonal Referral Hospitals (ZRH)

3rd generation cephalosporin (marked by ESBL production) in Gram Negative Bacteria by sample types and level of health care facilities

Challenges and Lessons Learnt

- AMS implementation has been successful in Tanzania and the government is fully supporting these initiatives. However, there are still:
 - Disproportional sectoral representations (Public sector >>> Private sector)
 - ✓ Initiatives are largely donor-dependent
 - ✓ A critical need to envisage local funding mechanisms for sustainability
- Systematically collected AMR surveillance data has generated evidence based information into the Tanzania Standard Treatment Guidelines and National Essential Medicines List (STG/NEMLIT) E.g. Treatment of UTIs using Nitrofurantoin as the first line
- A need to cascade AMR and AMU surveillance to sub-national levels E.g. more involvement of Regional Referral Hospitals and District Hospitals.

ADVANCING THE LABORATORY PROFESSION AND NETWORKS IN AFRICA

ANTIMICROBIAL RESISTANCE (AMR) COMMUNITY OF PRACTICE (CoP)

Asanteni

*PATH

