

### ANTIMICROBIAL RESISTANCE (AMR) COMMUNITY OF PRACTICE (CoP)



Alarming levels of Multidrug Resistance in aerobic gram-negative bacilli isolated from the nasopharynx of healthy under-five children in Accra, Ghana

#### MARY-MAGDALENE OSEI

**Research Assistant** 

**University of Ghana Medical School** 

**Department of Medical Microbiology** 







### **Overview**



**INTRODUCTION** 

**STUDY OBJECTIVES** 

MATERIALS AND METHODS

**RESULTS** 

**DISCUSSIONS** 

**CONCLUSIONS** 

**LIMITATIONS** 

**RECOMMENDATIONS** 

**REFERENCES** 



#### Introduction



• Nasopharyngeal bacterial pathogens include both Gram-positive bacteria and Gram-negative bacteria (Zar and Ferkol, 2014).

• And in children, this may lead to the development of lower respiratory tract infections including pneumonia and bronchiolitis later in life (Vissing *et al.*, 2013.

• Children with nasopharyngeal carriage serve as reservoirs and transmitters of pathogens including antimicrobial resistant producing genes (Simell *et al.*, 2014).



#### Introduction Cont'd



- Previous studies from Brazil, Indonesia, Angola and the Netherlands report a Gram negative bacilli (GNB) carriage prevalence varying from 5% to 57% in healthy children (*Lima et al.*, 2010; Vissing *et al.*, 2013; Farida *et al.*, 2013; Wolf *et al.*, 2001 and Wolf *et al.*, 1999.
- There is no published evidence on nasopharyngeal carriage of aerobic GNB from Ghana.
- The information is crucial to help in understanding the common aerobic GNB prevalent in Ghana and also serve as a baseline for the monitoring of future trends.

### **Study Objectives**



- This study was among healthy under-five children attending selected daycare centres in the Accra metropolis of the Greater Accra region of Ghana from September to December 2016, to...
  - (i) determine the prevalence of nasopharyngeal colonization of GNB and
  - (ii) describe the common organisms isolated and their antimicrobial resistance patterns including multidrug resistance (MDR), Extended-Spectrum Beta Lactamase (ESBL)-, AmpC- and Carbapenemase-producing bacilli.

#### **Materials and Method**



• Retrospective cross-section study involving frozen samples at -80°C in STGG collected as part of previous study conducted in 2016.

 Random sampling was made from seven day-care centres from four districts in the Accra metropolis.

Inclusion criteria: Pneumococcal vaccination

Exclusion criteria: No approved consent

Children who declined

Children with active upper respiratory tract infection

Antibiotic use



#### Materials and Method Cont'd





## MATERIALS AND METHOD CONT'D



Plated on sterile MacConkey. Incubated for 18-24 hrs at 35 ±2 °C

**GNB** identification using MALDI-TOF after BTS passes

0.5 MacFarland using Phoenix nephelometer after calibrating with a standard



Antibiotic zones of inhibition were interpreted using CLSI 2021 version

**AST** 

- 1. ESBL
- 2. AmpC
- Carbapenemase

All antibiotics were controlled using ATCC E. coli 25922 control

strain

Inoculated on Mueller Hinton to obtain confluent growth



Data analysis using STATA version 14.1



#### Materials and Method Cont'd



Antibiotics selected for the research was based on

- Ghana National Drugs Programme (GNDP) Standard Treatment Guidelines Republic of Ghana Ministry of Health.
- WHO AWaRE Antibiotics 2021 AWaRe Classification.





Republic of Ghana

Ministry of Health
Ghana National Drugs Programme
(GNDP)

#### Standard Treatment Guidelines

Ministry of Health Seventh Edition (7<sup>th</sup>), 2017



#### Results



• The nasopharyngeal carriage prevalence of aerobic GNB was 14%, n = 57/410% (95% CI: 10.8%-17.6%).

| species                 | Prevalence          |  |
|-------------------------|---------------------|--|
| Enterobacterales        |                     |  |
| E.coli                  | (26.3%, n = 15/57); |  |
| Klebsiella pneumoniae   | (24.5%, n= 14/57);  |  |
| Enterobacter cloacae    | (17.7%, n = 10/57)  |  |
| Serratia marcescens     | 1.8%, 1/57)         |  |
| Acinetobacter baumannii | 8.9%, n = 5/57      |  |
| Pseudomonas aeruginosa  | 7.0%, n = 4/57      |  |

#### Results Cont'd



- Resistance was most frequently observed for cefuroxime (73.7%) followed by ampicillin (64.9%) and amoxicillin/clavulanic acid (59.6%).
- The organisms were least resistant to gentamicin (7.0%), amikacin and meropenem (both at 8.8%).
- Overall, MDR was observed in 66.7% (95% CI: 53.3%-77.8%) of isolates.
- MDR was relatively higher in *Acinetobacter baumannii* (100%), *E. cloacae* (90%) and *E. coli* (80.0%).

## **Results Cont'd**



| Species          | AmpC  | ESBL  | Carbapenemase |
|------------------|-------|-------|---------------|
| Enterobacterales |       |       |               |
| E.coli           | 26.7% | 33.3% | 10.5%         |
| K. Pneumoniae    | 28.8% | 21.4% | 20.0%         |
| A. baumannii     | 100%  | 20%   | 20.0%         |
| P. aeruginosa    | -     | -     | _             |

#### **Discussions**



- This is the first study from Ghana reporting on the prevalence of nasopharyngeal carriage of aerobic GNB and their resistance patterns in healthy under-five children.
- Many studies globally on nasopharyngeal carriage were on Gram-positive bacteria and anaerobic Gram-negative bacteria, however evidence on aerobic GNB is limited.

 Consequently, this study also contributes to the limited global evidence on this issue.

#### **Discussions**



One in seven children were carriers of aerobic GNB. Prevalence of aerobic GNB carriage was 14% in our study.

• E.coli, K. pneumoniae and E. cloacae were the commonest organisms and accounted for two-thirds of all organisms isolated.

Resistance levels were high and two-thirds of the organisms exhibited MDR.

#### Conclusions



- In this first-ever study from Ghana calls for a nationwide surveillance system with data collected periodically;
  - to help in generating a national representative information which can be used to inform the choice of antibiotics in empiric treatment of infections caused by GNB.

• The evidence also calls for better infection prevention and control at the day-care centres in Ghana to prevent further transmission.

#### Limitations



• Overall, with the prevalence of GNB carriage in the healthy under-five children, the sample size was not sufficient to estimate the resistance levels in individual bacteria.

• The study was conducted in one of the areas of Accra and, thus, we feel that the findings are not generalizable nationwide.

#### Recommendations



- The study used samples collected in 2016, this reflects the situation six years ago;
  - This warrants a follow-up study to assess the current rates of nasopharyngeal carriage and resistance levels.

- A single study from one city may not be representative of the situation in Ghana;
  - This calls for either a nationwide study or strengthening surveillance systems to routinely capture the GNB carriage rates in healthy children.

#### **Recommendations Cont'd**



• Setting up sentinel sites for collection of nasopharyngeal samples on a periodic basis and analysed using molecular technology to know the circulating genes responsible for antimicrobial resistance.

• Setting up prospective follow-up studies to find out the factors associated with progression from carriage to infection.

 The high levels of GNB carriage and MDR call for improved infection prevention and control in day-care centres to prevent any further transmission.

### Way Forward in AMR Fight



• The study is in line with strategic plan objectives of the Ghana National Action Plan on AMR;

To develop and implement infection prevention and control (IPC) policies and

interventions in all relevant sectors nationwide.

• To set research agenda into AMR in affected sectors.

• To establish a surveillance system for antimicrobial resistance.

Increase national awareness of AMR.





### Way Forward in AMR Fight



- The WHO Structured Operational Research and Training IniTiative (SORT IT) through this research will help to formulate IPC policy;
  - Specifically to target day-care centres or early child development centres.









#### References



- Zar, H.J.; Ferkol, T.W. The Global Burden of Respiratory Disease—Impact on Child Health. Pediatric Pulmonol-ogy 2014, 49, 430–434, doi:10.1002/ppul.23030.
- Vissing, N.H.; Chawes, B.L.K.; Bisgaard, H. Increased Risk of Pneumonia and Bronchiolitis after Bacterial Col-onization of the Airways as Neonates. American Journal of Respiratory and Critical Care Medicine 2013, doi:10.1164/rccm.201302-0215OC.
- Simell, B.; Auranen, K.; Käyhty, H.; Goldblatt, D.; Dagan, R.; O'Brien, K.L.; Group (PneumoCarr), for the P.C. The Fundamental Link between Pneumococcal Carriage and Disease. Expert Review of Vaccines 2014, doi:10.1586/erv.12.53.

#### References Cont'd



- Lima, A.B.M.; Leão, L.S.N. de O.; Oliveira, L.S. da C.; Pimenta, F.C. Nasopharyngeal Gram-Negative Bacilli Colonization in Brazilian Children Attending Day-Care Centers. Braz. J. Microbiol. 2010, 41, 24–27, doi:10.1590/S1517-83822010000100005.
- Farida, H.; Severin, J.A.; Gasem, M.H.; Keuter, M.; van den Broek, P.; Hermans, P.W.M.; Wahyono, H.; Ver-brugh, H.A. Nasopharyngeal Carriage of Klebsiella Pneumoniae and Other Gram-Negative Bacilli in Pneumo-nia-Prone Age Groups in Semarang, Indonesia. J Clin Microbiol 2013, 51, 1614–1616, doi:10.1128/JCM.00589-13.

#### References Cont'd



- Wolf, B.; Rey, L.C.; Moreira, L.B.; Milatovic, D.; Fleer, A.; Verhoef, J.; Roord, J.J. Carriage of Gram-Negative Ba-cilli in Young Brazilian Children with Community-Acquired Pneumonia. International Journal of Infectious Diseases 2001, 5, 155–159, doi:10.1016/S1201-9712(01)90091-8.
- Wolf, B.; Gama, A.; Rey, L.; Fonseca, W.; Roord, J.; Fleer, A.; Verhoef, J. Striking Differences in the Nasopha-ryngeal Flora of Healthy Angolan, Brazilian and Dutch Children Less than 5 Years Old. Annals of Tropical Pae-diatrics 1999, doi:10.1080/02724939992383.



#### ANTIMICROBIAL RESISTANCE (AMR) COMMUNITY OF PRACTICE (CoP)



# THANK YOU

















