Performance evaluation of the Xpert MTB/XDR assay

Anura David

ASLM webinar

15 July 2021

CE-IVD. In Vitro Diagnostic Medical Device. May not be available in all countries. Not available in the United States.

Disclosures

- Funding for this study was received from the Foundation of New Innovative Diagnostics (FIND)/KFW
- Cepheid provided the Xpert MTB/XDR cartridges for the study

Drug-resistant TB

- In 2019, ~500 000 individuals developed Rif-R TB, of which 78% developed MDR-TB
- The rapid diagnosis and appropriate treatment of drug-resistant TB (DR-TB) is therefore essential to prevent significant morbidity, mortality and further transmission of TB disease
- Available second-line diagnostics require laboratory infrastructure pDST and Bruker-Hain MTBDRs/ LPA
- Xpert MTB/XDR assay is a lower complexity, automated molecular assay for broader resistance detection suitable for use at lower levels in the healthcare system

Xpert MTB/XDR Assay

- Results in <90 minutes
- Same easy-to-use process as Xpert MTB/RIF Ultra
- Performed on existing GeneXpert[®] platform equipped with 10-color modules
- On board internal controls: Sample Volume Adequacy (SVA), Probe Check Control (PCC), Sample Processing Control (SPC)
- Detects resistance to:
 - INH- katG, inhA pt, ahpC, fabG1
 - ETH inhA promoter
 - FQs-gyrA, gyrB
 - SLID (AMK, KAN, CAP) rrs, eis

10-color modules can also run any other Xpert test

Study Synopsis

- Phase II: Multicentre Clinical Study to Assess the Performance of the Xpert MTB/XDR Assay for INH- and Second-line Resistance Detection
- Sites
 - o Mumbai, India: P.D. Hinduja Hospital
 - Delhi, India: National Institute of Tuberculosis and Respiratory Diseases
 - Chisinau, Moldova: Phthisiopneumology Institute "Chiril Draganiuc"
 - South Africa: University of the Witwatersrand, Johannesburg
- Primary Objectives: clinical diagnostic accuracy and operational characteristics of the Xpert MTB/XDR assay
- Secondary objectives: Assess additional Xpert MTB/XDR performance characteristics, including direct performance versus performance on cultured samples, performance between sites, by smear status, by gene target and compared to Hain MTBDRplus and MTBDRsl

Trial Design

Inclusion Criteria

- ≥ 18 years
- Symptoms suggesting pulmonary TB, i.e. persistent cough, and at least one DR-TB risk factor
- MTBC-positive and valid RIF-resistance profile by Xpert MTB/RIF Ultra
- Provision of informed consent
- Production of an adequate quantity (≥4mL) of sputum

 $^{\# \}ge 3$ ml of sputum is required for the trial. This can be achieved through an individual sputum or pooling of serially collected sputa, homogenized with glass beads.

*CE-IVD. In Vitro Diagnostic Medical Device. May not be available in all countries. Not available in the United States.

Participant cohort

- 710 participants were approached and enrolled at the four sites (Jul 2019 Mar 2020)
- All participants were diagnosed with TB (as reported by the Xpert G4 or Xpert MTB/RIF Ultra assay) and all had a valid RIF result
- 611/710 had a MTBC-positive MGIT and were included in the analysis
- Reference standard = DST and/or WGS

Ν	611		
Demographics or clinical characteristics			
Median age [min - max] (years)	37 [18, 77]		
% Female sex [n/N]	35% [214/611]		
% HIV positive [n/N]	16% [69/425]		
% Xpert G4 or Ultra RIF-R [n/N]	81% [494/611]		
% smear negative [n/N]	24% [146/609]		

Indeterminates

	%	n/N
MTB invalid	2.96	21/709
Indeterminate (drug resistance)		
INH resistance	0.30	2/657
ETH resistance	0.15	1/657
FLQ resistance	1.37	9/657
AMK resistance	3.50	23/657
KAN resistance	3.20	21/657
CAP resistance	2.89	19/657

Xpert MTB/XDR invalid rate higher for smear negative samples than for smear positive samples (6.2% compared with 0.2%)

Xpert MTB/XDR compared to composite reference standard

	Direct		Culture isolate	
	Sensitivity (%, 95% Cl)	Specificity (%, 95% CI)	Sensitivity (%, 95% Cl)	Specificity (%, 95% CI)
MTB Detection	98.4 (96.9-99.2)		100 (94.2-100)	
INH resistance	94.3 (91.7-96.1)	100 (94.1-100)	94.6 (92.1-96.3)	100 (94.2-100)
ETH resistance	54.3 (48.7-59.7)	99.5 (97.0-100)	56.3 (50.8-61.7)	98.2 (95.0-99.4)
FLQ resistance	94.5 (90.5-96.9)	99.3 (97.3-100)	95.0 (91.2-97.3)	100 (98.4-100)
AMK resistance	73.2 (62.1-82.1)	99.5 (98.1-99.9)	73.6 (62.8-82.2)	99.8 (98.6-100)
KAN resistance	86.2 (80.6-90.4)	98.4 (96.0-99.4)	87.7 (82.4-91.6)	99.1 (97.0-99.8)
CAP resistance	60.9 (49.8-71.0)	99.8 (98.5-100)	59.8 (49.0-69.7)	100 (98.9-100)

The composite reference standard was defined as "resistant" if either WGS or pDST was resistant, and defined as "susceptible" if both pDST and WGS were susceptible

LPA and Xpert MTB/XDR compared to culture DST

	LPA (Indirect)		XDR (Direct)	
	Sensitivity (%, 95% Cl)	Specificity (%, 95% CI)	Sensitivity (%, 95% CI)	Specificity (%, 95% CI)
INH resistance	93.0 (90.0-95.0)	100 (94.0-100)	94.0 (92.0-96.0)	100 (94.0-100)
FLQ resistance	95.0 (91.0-97.0)	99.0 (97.0-100)	95.0 (91.0- 97.0)	99.0 (97.0-100)
AMK resistance	73.0 (62.0-82.0)	100 (98.0-100)	73.0 (62.0-82.0)	100 (98.0-100)
KAN resistance	86.0 (81.0-90.0)	98.0 (96.0 -99.0)	86.0 (81.0-90.0)	98.0 (96.0 -99.0)
CAP resistance	61.0 (50.0-71.0)	100 (99.0-100)	61.0 (50.0-71.0)	100 (99.0-100)

The composite reference standard was defined as "resistant" if either WGS or pDST was resistant, and defined as "susceptible" if both pDST and WGS were susceptible CE-IVD. In Vitro Diagnostic Medical Device. May not be available in all countries. Not available in the United States.

Xpert MTB/XDR (Direct) compared to composite reference standard stratified by smear status

	Smear positive	Smear negative	Specificity	
	Sensitivity (%, 95% Cl)	Sensitivity (%, 95% Cl)	(%, 95% CI)	
INH resistance	94.3 (91.3-96.3)	94.1 (87.1-97.6)	100 (94.1-100)	
ETH resistance	54.8 (48.5-60.9)	50.8 (38.2-63.3)	99.5 (97.0-100)	
FLQ resistance	96.1 (91.7-98.3)	89.1 (77.1-95.5)	99.3 (97.3-99.9)	
AMK resistance	76.1 (63.9-85.3)	53.8 (26.1-79.6)	99.5 (98.1-99.9)	
KAN resistance	87.4 (81.4-91.8)	78.8 (60.6-90.4)	98.4 (96.0-99.4)	
CAP resistance	60.8 (48.7-71.7)	54.5 (24.6-81.9)	99.8 (98.5-100)	

The *composite reference standard* was defined as "resistant" if either WGS or pDST was resistant, and defined as "susceptible" if both pDST and WGS were susceptible CE-IVD. In Vitro Diagnostic Medical Device. May not be available in all countries. Not available in the United States.

Conclusions

- Similar performance demonstrated using Xpert MTB/XDR assay on direct sputum and MGIT
- Sensitivity >90% for INH and FLQ
- Specificity >98% for all drug targets
- Almost identical performance between LPAs and Xpert MTB/XDR assay
- Xpert MTB/XDR assay demonstrated better performance on smear positive specimens

Acknowledgements

KFW

FIND

- Adam Penn-Nicholson
- Sophia Georghiou
- Samuel Schumacher
- Sergio Carmona
- Morten Ruhwald
- Claudia Denkinger
- Aurélien Mace
- Stefano Ongarello
- Shubhada Shenai
- Shakir Reza
- Shweta Mall
- Megha Dhalla
- Sarabjit Chadha
- Sanjay Sarin

University of the Witwatersrand

- Lesley Scott ٠
- Wendy Stevens ٠
- Francesca Conradie ٠
- Anura David ٠
- Trish Kahamba •
- Lyndel Singh ٠
- Xabisa Makeleni ٠

Funder

KFW

Support

- ACOMED
- Medgenome
- Cepheid
- **Study participants** ٠

de Ftiziopneumologie "Chiril Draganiuc

health

Department:

Health

• Dr. Nelly Ciobanu

- India NITRD
- Dr. Vithal Prasad Myneedu
- Dr. Manpreet Bhalla

Moldova – Institute of

Phthisioneumology

• Dr. Valeriu Crudu

• Dr. Rohit Sarin

India – PD Hinduja

- Dr. Camilla Rodrigues
- Dr. Mubin Kazi

REPUBLIC OF SOUTH AFRICA

