

Xpert[®] MTB/XDR – Considerations for Implementation: **Programmatic & laboratory perspectives South Africa as a case study**

M. Pedro Da Silva¹, F. Ismail², S.V. Omar², M.S. Radebe¹, P. Marokane¹, L. Scott¹

¹ National Priority Programmes, NHLS

² Centre for Tuberculosis & WHO TB Supranational Reference Laboratory Network, NICD, NHLS

Conflict of Interest Disclosure

X I have no Conflict of Interest to report.

I have the following Conflict of Interest(s) to report:

WHO Recommendations - NAATs for drug-resistance detection

Classes of	technologies	and	accoriated	producte	avaluated
Classes UI	technologies	anu	associated	products	evaluateu.

	Technology Class	Products included in evaluation		
World Health Organization	Moderate complexity automated NAATs for detection of TB and resistance to rifampicin and isoniazid	 Abbott RealTime MTB and Abbott RealTime MTB RIF/INH (Abbott) FluoroType MTBDR and FluoroType MTB (Hain Lifescience) BD MAX[™] MDR-TB (Becton Dickinson) cobas MTB and cobas MTB-RIF/INH (Roche) 		
Update on the use of nucleic acid amplification tests to detect TB and drug-resistant TB: rapid communication	Low complexity automated NAATs for detection of resistance to isoniazid and second-line anti-TB agents	• Xpert MTB/XDR (Cepheid)		
	High complexity hybridization-based NAATs for detection of resistance to pyrazinamide	Genoscholar PZA-TB II (Nipro)		

Conclusions:

Available evidence supports the use of:

- 1. moderate complexity automated NAATs for the detection of TB and resistance to rifampicin and isoniazid;
- 2. low complexity automated NAATs for the detection of resistance to isoniazid and second-line anti-TB agents; and
- 3. high complexity hybridization-based NAATs for the detection of resistance to pyrazinamide.

January 2021

WHO Recommendations - Low complexity automated NAATs

WHO consolidated guidelines on tuberculosis

Module 3: Diagnosis Rapid diagnostics for tuberculosis detection

2021 update

World Heal

World Health Organization

WHO operational handbook on tuberculosis

Module 3: Diagnosis Rapid diagnostics for tuberculosis detection

WHO. 2021

2021 update

Recommendations – Low complexity^{*} NAATs for detection of resistance to isoniazid and second-line anti-TB agents

- 1. In people with bacteriologically confirmed pulmonary TB, low complexity automated NAATs **may be used on sputum for the initial detection of resistance to isoniazid and fluoroquinolones**, rather than culture-based phenotypic DST. (Conditional recommendation; moderate certainty of evidence for diagnostic accuracy)
- 2. In people with bacteriologically confirmed pulmonary TB <u>and resistance to rifampicin</u>, low complexity automated NAATs **may be used on sputum for the initial detection of resistance to ethionamide**, rather than DNA sequencing of the inhA promoter. (Conditional recommendation; very low certainty of evidence for diagnostic accuracy)
- 3. In people with bacteriologically confirmed pulmonary TB <u>and resistance to rifampicin</u>, low complexity automated NAATs **may be used on sputum for the initial detection of resistance to amikacin**, rather than culture-based phenotypic DST. (*Conditional recommendation; low certainty of evidence for diagnostic accuracy*)

Subgroups to be considered:

- Recommendations based on evidence of accuracy in sputum of adults with confirmed PTB.
- Extrapolated to adolescents and children and to people with EPTB.
- Apply to PLHIV.

* LOW COMPLEXITY: no specialized biosafety infrastructure is required; only basic laboratory skills to perform the test and equipment is required.

WHO Recommendations - Low complexity automated NAATs

World Health Organization

World Health

Module 3: Diagnosis Rapid diagnostics for tuberculosis detection

2021 update

Module 3: Diagnosis Rapid diagnostics for tuberculosis detection

2021 update

Diagnostic performance - pooled data:

Resistance detection to:	Pooled Sensitivity	Pooled Specificity	Comparator
lsoniazid	94.2% (95% CI: 89.3-97.0%)	98.0% (95% Cl: 95.2-99.2%)	Culture-based DST
Fluoroquinolones	93.1% (95% CI: 88.0-96.1%)	98.3% (95% CI: 94.5-99.5%)	Culture-based DST
Ethionamide	98.0% (95% CI: 74.2-99.9%)	99.7% (95% CI: 83.5-100.0%)	Sequencing of inhA promoter
Amikacin *	86.1% (95% CI: 75.0-92.7%)	98.9% (95% Cl: 93.0-99.8%)	Culture-based DST

* The review did not include molecular DST for kanamycin and capreomycin as WHO does not currently recommend these second-line injectable agents for use in RR-TB or MDR-TB treatment regimens.

Xpert® MTB/XDR: Assay characteristics and operational requirements

1. Nested real-time PCR for detection of drug-resistant TB

- Self-contained cartridge minimising risk of cross-contamination
- Simultaneous detection of MTB complex, mutations associated with INH, ETH, FQ, SLID resistance

Drug	Gene Target		
	inhA promoter		
Iconiazid	katG		
Isomaziu	fabG1		
	oxyR-ahpCintergenic region		
Ethionamide	inhA promoter		
Fluerequinelenes	gyrA		
Fluoroquinorones	gyrB		
Amikacin, kanamycin, and capreomycin	rrs		
Amikacin and kanamycin	<i>eis</i> promoter		

2. Built-in controls

- Sample processing control (monitor PCR inhibition)
- Probe check control (internal cartridge mechanics)

3. Time to result

- Random access
- <90 minutes: Xpert[®] MTB/XDR
- <80 minutes: Xpert[®] MTB/RIF Ultra
- Throughput: 5 tests per module/8-hour

4. Limit of detection

- Xpert[®] MTB/XDR: 136 cfu/mL (raw sputum); 86 cfu/mL (sediment)
- Xpert[®] MTB/RIF: 112.6 cfu/mL
- Xpert[®] MTB/RIF Ultra: 15.6 cfu/mL

Xpert® MTB/XDR: Assay characteristics and operational requirements

È

5. Assay intended for use as a reflex once MTB detected/rifampicin-R

- Either off residual sputum, or
- Concentrated sputum sediments

6. Operational specifications: Temperature

- Storage temperature: 2-28°C
- Unprocessed sputum: up to 7 days, 2-35°C
- Sputum sediments: up to 7 days, 2-8°C

7. Reflexing to Xpert[®] MTB/XDR requires

- Once MTB detected/rifampicin-R then reflex off SR-treated specimen
- If SR-treated residual stored at 2-8°C, then 4 hour processing window
- If SR-treated residual stored unrefrigerated (up to 35°C), then 2.5 hour processing window

8. Minimum specimen volume

- Starting volume of raw sputum: ≥2.2ml
- ≥2ml SR-treated specimen required for reflex

Xpert[®] MTB/XDR: Assay characteristics and operational requirements

9. 10-colour GeneXpert® Technology

Independently monitor ≥10 signals

- Higher degree of multiplexing targeting >6 genes

- Procured as new modules; new systems; or as satellites

10. 10-colour GeneXpert® Technology: Compatibility

- Supported systems: GXI, II, IV, and XVI
- Supported assays: Compatible with all Xpert[®] tests
- Supported software: 10-colour on Dx4,7b and higher; Xpert® MTB/XDR on Dx6,2 and higher

Xpert[®] MTB/XDR: Diagnostic pathway for accurate results

DIAGNOSTIC PATHWAY GRAPHIC COURTESY OF CEPHEID (ADAPTED)

Considerations for integration of Xpert[®] MTB/XDR

- Epidemiology:

- Isoniazid, rifampicin, other drug resistance rates
- Diagnostic algorithms:
 - For detection of TB-disease
 - Detection of drug-resistant TB/additional resistance
 - Number of baseline-specimens collected
- Testing & GeneXpert instrumentation:
 - Centralised/decentralized
 - Number of modules/6-colour/10-colour
 - Operating software version
 - Testing using Xpert[®] MTB/RIF or MTB/RIF Ultra
- TB program:
 - Drug-resistant TB treatment regimens
 - Consultation and placement
- Costs:
 - Test cartridge costs; Instrumentation/equipment
 - Additional/repeated testing 'indeterminate' or 'invalid' results
 - With ↑ identification, ↑ total resources to treat
 - Local costing
 - Cost-effectiveness:
 - Lead to more/fewer individuals diagnosed compared to current
 - Diagnostic algorithm and placement

Xpert® MTB/XDR CE-IVD. In vi

Contraction of the

Programmatic considerations:

 Testing & GeneXpert instrumentation:

Costs

Current Xpert[®] MTB/RIF Ultra infrastructure:

– Decentralised across 165 laboratories		
 Catering for low-, medium-, & high-throughput needs 		
- Annual capacity:	>4 million tests	
– Actual tested/annual:	~2 million TB tests	
– MTB detection rate:	~9%	
– Rifampicin-R rate:	~5%	

Current Xpert[®] MTB/RIF Ultra infrastructure:

Con t

GRAPHIC COURTESY OF GRAEME DOR, DMMH, WITS UNIVERSITY

Diagnostic value-chain considerations:

- Pre-analytical:

- Specimen volume
- PTB/EPTB specimens
- Testing volumes
- Supply chain management

Adequate starting specimen volume to reflex to Xpert[®] MTB/XDR

- Majority of specimens << 2ml raw volume

Currently only validated for pulmonary TB

Verifications required to cater for EPTB specimen types

- Analytical:
- Laboratory workflow
- Refrigeration capacity
- Technical aspects
- ? Replacement of existing technologies

A

Processing as reflex test: workflow changes

- Refrigeration of SR-treated residual to maximise 4hr processing window
- Labelling & ensuring correct retrieval
- Meeting 4hr window in high-throughput laboratories (High rifampicin-R rates)
- Reflex processing window: ? extension and impact

Technical aspects

- If no additional R-detected, no confirmation of susceptibility
- Heteroresistance/mixed populations proportions important

Replacement strategy for MTBDRplus/MTBDRsl

- Minimal change to existing DR-TB reflex
- Same targets: gyrA/B (FLQ); rrs/eis (SLID); inhA (ETH)
- INH-result/Higher sensitivity than MTBDRplus
 (2 additional targets: fabG1 and oxyR-ahpC region)
- Culture performed in parallel, for pDST
- Performance not smear-status dependent: \downarrow TAT
- No subjective interpretation with MTBDRplus/sl
- $-\downarrow$ workload
- $-\downarrow$ user training/expertise required.

- Post-analytical:
 - Clinician training/guidance
 - Reporting
 - Actions and additional testing
 - Definitions

Introduction of a new test

- Training for clinicians on interpretation and treatment decisions
- Guideline updates

Clinical management

- Earlier clinical decision if Xpert[®] MTB/XDR result successful:
 - Hours versus days/weeks
 - \uparrow patients initiating treatment
 - ↓ loss to follow-up
 - ↑ survival rates
- When not reflexed and testing off an additional specimen:
 - Delay if MTB-not detected

Updated WHO pre-XDR/XDR definitions

- Alignment within the TB-program

In conclusion

Provision of molecular DST by Xpert[®] MTB/XDR has numerous advantages:

- Of low complexity allowing for decentralisation and nearer to point of care testing
- Faster time to results than current standards of care
- Rapid and early detection of fluoroquinolone resistance for oral, shortened drug-R treatment regimens
- Simultaneous detection of resistant to isoniazid, fluoroquinolones, ethionamide, and amikacin
- Detection of isoniazid resistance
- Potential impact on clinical care: early initiation, reduced loss to follow up, etc.
- Better performance in paucibacilliary specimens, compare to current technologies
- Can be used to rule-in resistance

Key considerations for laboratory implementation:

- Local epidemiology
- Placement in the context of local algorithms/guidelines and existing infrastructure
- Additional investment/costs and costing analysis
- Starting specimen volume to be able to reflex following Xpert® MTB/RIF or MTB/RIF Ultra testing
- Culture-based DST still required
- Training aspects and results interpretation

- Commercial collaborators: Cepheid
- FIND
- Clinical Laboratory Services: Mycobacteriology laboratory staff
- NPP Xpert Programme: Puleng Marokane, Mbuti Samuel Radebe
- Department of Molecular Medicine and Haematology, Wits University, NPP: Prof Wendy Stevens
- Department of Molecular Medicine and Haematology, Wits University, NPP, R&D team: Anura David, Graeme Dor, Prof Lesley Scott
- NPP Data Analyst: Silence Ndlovu
- Centre for Tuberculosis, NICD: Dr Farzana Ismail, Dr Shaheed V
 Omar
- NHLS, TB Subcommittee of the Microbiology Expert Committee and Wider TB-Forum
- NHLS Xpert and TB-culture laboratories
- Clinical partners
- Department of Health (TB Cluster)
- ASLM

ASLM

