

Expansion of COVID19 diagnostics in

South Africa: Rapid Antigen Testing

Professor Wendy Stevens

- Head: Department of Molecular Medicine and Haematology, University of the Witwatersrand
- Director: National Priority Programs, National Health Laboratory Service
- Head: iLEAD Innovation Hub

Contents

Pages Item **1.** Background to testing context 4 of SARS CoV-2 in SA Molecular testing update 9 2. 3. Discovery of new variant 13 4. Antigen testing overview 17 5. Antigen RDT validations 20 6. Antigen testing use cases and 23 testing algorithms

7. Challenges with antigen testing 29

1. Background to Testing Context of SARS CoV-2 IN SA

Temporal Considerations for SARS CoV-2 Diagnosis

Nandini Sethuraman et al1 concluded a comprehensive laboratory testing window with different technologies based on published studies. Detection sensitivity for SARS-COV-2 antibodies and virus varies significantly from the time the specimens are taken

Nasopharyngeal swab PCR

- Virus isolation from respiratory tract
- Bronchoalveolar lavage/sputum PCR
- Stool PCR
- ____ IgM antibody
- IgG antibody

Context in South Africa

NHLS has a network of 265 laboratories across the country. By 28 February 2021, the country had conducted approximately 9 million COVID 19 tests

Source: NHLS Portfolio Committee Presentation, June 2020; SA Department of Health, NICD, "Update on Covid-19 (28th February 2021)" Notes: 1. Tests done by NHLS (250 tests with unconfirmed location); 2. Backlog of unprocessed specimens; 3. Capacity (equipment available) as at end May 2020, 4. Number of hospitals reporting COVID 19 cases from both public and private sector

SARS-CoV-2 Testing Landscape: South Africa

Table 1. Advantages and disadvantages of testing methods for SARS-CoV-2

TEST TYPE	ADVANTAGES	DISADVANTAGES		
Nucleic acid amplification testing (NAAT)	 Detects active SARS-CoV-2 infection High sensitivity and specificity 	 Turnaround time of hours to days Labour intensive Requires laboratory infrastructure and skilled personnel More expensive than RDTs 		
Rapid diagnostic tests: Antigen- detecting tests	 Detects active SARS-CoV-2 infection Can be used at the point of care (outside laboratories) Easy to perform Quick results (typically under 30 minutes) enabling rapid implementation of infection control measures, including contact tracing Less expensive than NAAT, e.g., RT-PCR tests 	 Variable sensitivity and specificity, generally lower than NAAT Lower sensitivity means negative predictive value is lower than for NAAT, especially in settings with high prevalence of SARS-CoV-2 Confirmatory NAAT testing of RDT positives is advised in all low-prevalence settings and for RDT negatives in high-prevalence settings. Negative Ag-RDT results cannot be used to remove a contact from quarantine 		
Rapid diagnostic tests: Antibody- detecting tests	 Ab-RDTs can be used to detect previous infection with SARS-CoV-2 Can be used at the point of care (outside laboratories) or in higher throughput formats in laboratories Easy to perform Quick results (typically under 30 minutes for point-of-care testing) Less expensive than NAAT, e.g., RT-PCR tests 	 Clinical significance of a positive Ab-RDT result is still under investigation Positive Ab-RDT results do not guarantee presence of neutralizing antibodies or protective immunity Ab-RDTs should not be used for determining active infections in clinical care or for contact-tracing purposes Interpretation of Ab-RDT results 		
SARS-CoV-2 antigen-detecting rapid diagnostic tests: an implementation guide. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.		depends on the timing of the disease, clinical morbidity, the epidemiology and prevalence within the setting, the type of test used, the validation method, and the reliability of the results		

2. Molecular Testing Update

NHLS SARS-CoV-2 molecular testing platform

MOLECULAR TESTING UPDATE

Increase in VL: Median Ct by facility type

- · Similar distribution of assays receiving specimens from "clinic" and "hospital"
- Ct lower in 2nd wave
- By January in spite of increasing positivity, the Ct trend is upward (lower viral load)

3. Discovery of new variant

Network for Genomic Surveillance in South Africa

Identification and tracking of novel SARS-CoV-2 lineage in South Africa

New lineage rapidly become the dominant

A NEW SARS-COV-2 LINEAGE WITH MULTIPLE SPIKE MUTATIONS EMERGE AND SPREAD FAST IN SOUTH AFRICA

Prof. Tulio de Oliveira on behalf of the NGS-SA

Director: KZN Research Innovation & Sequencing Platform (KRISP) Professor: Nelson R Mandela School of Medicine, UKZN Associate Professor: University of Washington & CAPRISA

Dr. Tulio de Oliveira, KRISP Minsterial and Media Briefing, 18 December 2021

Since early November, the new lineage has rapidly become the **dominant lineage** in the sampled locations (>90% of sequences in week beginning 16 Nov)

UKZN INSPIRING GREATNESS

United Kingdom variant

	<u>S.501Y.V2</u>			<u>B.1.1.7</u>			
	Gene	Nucleotide	Amino Acid	gene	nucleotide	amino acid	
	orf1ab	1059C>T	T265I	ORF1ab	C3267T	T1001I	
		5230G>T	K1655N		C5388A	A1708D	
		10323A>G	K3353R		T6954C	12230T	
	spike	21614C>T	L18F		11288-11296 deletion	SGF 3675-3677 dele	tion
		21801A>C	D80A	spike	21765-21770 deletion	HV 69-70 deletion	
		22206A>G	D215G		21991-21993 deletion	Y144 deletion	
Receptor binding		22287T>A*	L242H*		A23063T	N501Y	I hermo Fisher
domain (RBD). Son	ne	22286-22294 deletic	on* L242_244L deletion*		C23271A	A570D	assay S-target
experimental data of	on	22299G>T	R246I		C23604A	P681H	dropout
enhanced binding	and	22813G>T	K417N		C23709T	T716I	
nAb resistance.		23012G>A	E484K		T24506G	S982A	
		23063A>T	N501Y		G24914C	D1118H	
		23664C>T	A701V	Orf8	C27972T	Q27stop	
	orf3a	25563G>T	Q57H		G28048T	R52I	
		25904C>T	S171L		A28111G	Y73C	
	E	26456C>T	P71L	N	28280 GAT->CTA	D3L	
	Ν	28887C>T	T205I		C28977T	S235F	_
Summary:		Summar	y:				
	15 line	age defining mutation	S	14 linea	ge defining mutations		
	8 in spike			6 in spik	e		13
1 deletion			3 deletic	ons (1 in spike)			

DISCOVERY OF NEW VARIANT

501Y.V2 Structure: Tegally et al, 2021

4. Antigen testing overview

Available WHO approved COVID-19 Antigen RDTs

- High-performance SARS-COV-2 antigen tests are flexible tests to deploy across settings to reduce COVID-19 transmission
- There are currently three antigen (Ag) tests for SARS-CoV-2 that are being marketed in Low- and Middle-Income Countries ("LMICs")
- WHO recommends use of Ag rapid tests for COVID-19 diagnosis if they meet minimum performance standards (≥97% specificity and ≥80% sensitivity)

Approved COVID- diagnostics ¹	19 Test type	Test characteristics ²
Abbott	• Ag-RDT	 Spec: 99.8%, Sen: 91.4% TAT³: ~15 min/test
SD Biosensor	• Ag-RDT	 Spec⁴: 97.6^B - 99.3%^G Sen⁴: 76.6^G - 88.7%^B TAT: ~15 min/test
Lumira	Ag POC device	 Spec: 96.6%, Sen: 97.6% TAT: ~12 min/test Throughput: 5 tests/hr
Various suppliers	• NAAT (PCR)	 Gold standard, but high TATs limit usefulness of results⁵

- . Includes COVID-19 tests approved by a stringent regulatory authority (WHO, US FDA, and/or CE) as of Sept-2020.
- 2. Source: Data from manufacturer IFU.
- 3. TAT = turnaround around time.
- 4. Ranges represent data from Germany (low-prevalence) and Brazil (high-prevalence), respectively; performance expected to fall within this range.
- 5. Data suggests that TATs >2 days have little to no impact on reducing transmission, however in many SSA countries average turnaround times are 2-5 days or more (further detail on slide 10).

5. Antigen RDT Validations

Lab Antigen Testing Validation Streams for SAHPRA

Antigen test evaluations in progress

Antigen testing evaluations conducted at NHLS	Update
Reports completed and submitted to SAHPRA (n=7)	SD Biosensor
	Rapigen (Biocredit)
	Abbott Panbio
	PCL Antigene
	Nowcheck COVID-19 Ag test
	BD Veritor Ag assay
	Camtech COVID-19 Ag test \
Validations in progress (n=5)	Sienna COVID-19 Antigen Rapid Test Cassette
	Vivacheck SARS CoV-2 rapid antigen test
	• LumiraDx
	 Nanjing Norman Biological Technology Co., Ltd
	Zhejiang Orient Gene Biotech
Pending evaluations (using existing panels) n=8	BIOHIT Healthcare (Heifei)
	GENEDIA W COVID-19 Ag
	AMP SARS CoV-2 Rapid antigen test
	Boson Biotech
	Humasis COVID-19 Ag Test
	Nadal Covid-19 Antigen rapid test
	OnSite ® COVID-19 Ag Rapid Test
	Rapigen (SAHPRA requested evaluation)

6. Antigen testing use cases and testing algorithms

AG TESTING USE CASES

Ag Testing Use Cases

Use cases with the greatest impact on epidemic management goals should be prioritized

Algorithms in place

Testing Scenario	Diagnosis in populations with known risk or exposure	General population screening
Relevant WHO scenarios	Confirmed outbreaks, suspected outbreaks, regions of widespread community transmission, asymptomatic contacts	Low-prevalence / general population screening, monitoring disease incidence, points of entry, etc.
Location of Testing	 Health facilities (clinics, hospitals, treatment centers, etc.) Contact tracing (community or home) Closed / semi-closed settings (care homes, prisons, etc.) 	 Ports of entry (e.g. land borders, airports, etc.) Schools and workplaces Targeted population screening Surveillance
Target populations	 Patients with severe presentation Frontline HCWs and essential workers (symptomatic & asymptomatic) Symptomatic cases w/ high transmission risk Contacts of confirmed cases (symptomatic & asymptomatic) 	 Travelers Teachers, students, and administrative staff Factory workers, government employees, etc. Non-COVID inpatients (e.g. elective surgeries, hospitalized non-COVID patients, etc.)
		 Other general populations (e.g. random community screening, surveillance)

AFRICA

12030 NDP

Algorithm - Populations with known risk or exposure

Algorithm for populations with known risk or exposure in suspected or confirmed outbreak (health facilities, contact tracing, and closed / semi-closed settings)

- ^{1.} Symptomatic & asymptomatic
- ^{2.} Follow local guidelines on isolation of contacts
- ^{3.} Includes elderly, people with co-morbidities, populations in closedsettings (prisons, care homes, etc.)
- ^{3.} As determined by clinician based on patient clinical history. As per WHO "Continued clinical suspicion can, for example, be the absence of another obvious etiology, the presence of an epidemiological link, or suggestive clinical finding (e.g. typical radiological signs)."

Algorithm - General population screening

Algorithm for general population screening where there is no suspected or confirmed outbreak (schools, workplaces, ports of entry, churches, etc.)

 ¹More evidence is needed in support of serial testing for antigen tests and maybe an option. Follow country guidelines.

Antigen testing at open border posts

NHLS COVID Mobile Laboratory

- 72 ports of entry in the country (land, sea and air) that open and close according to lockdown restrictions.
- Mobile laboratories are used for testing at all open ports: agile system
 - Of 53 land ports, 20 are currently open with mobile laboratories deployed to provide on-site antigen testing.
 - Of 11 airports, 2 are currently open with both PCR and antigen provided by the mobile laboratories.
 - 3 airports are reopening and being brought online.
- ALL mobile laboratory results (PCR and antigen) are reported in real time
- Travelers receive results immediately via Short Message System (SMS)

Approach to Antigen testing beyond PCR

NHLS COVID Mobile Laboratory

NHLS Mobile Laboratory

Generator

Sample collection station 1

Sample collection station 2

LIS Registration Station

rovince	Distribution
astern Cape	13
ree State	10
auteng	12
waZulu Natal	10
impopo	6
/Ipumalanga	4
lorth West	4
lorthern Cape	6
Vestern Cape	5
rand Total	70

PCR Testing – GeneXpert and BioFire

Antigen Testing – SD Biosensor and Panbio

All mobile laboratories have **full** connectivity

Mobile staffing: driver-clerk and two nurses per van. Mobiles with PCR testing also have a technologist.

AG TESTING USE CASES

SARS-CoV-2 Testing: South Africa

SARS-CoV-2 diagnostic tests: June 2020-March 2021

SARS-CoV-2 Ag tests: October 2020-March 2021

		Total tests			
Province	No. tests	Percentage tested	No. positive	Percentage test positive	
EASTERN CAPE	68 479	14%	7 570	11,1%	
FREE STATE	23 081	5%	1 877	8,1%	
GAUTENG	46 366	10%	3 613	7,8%	
KWAZULU-NATAL	221 325	46%	24 440	11,0%	
LIMPOPO	6 889	1%	408	5,9%	
MPUMALANGA	38 973	8%	938	2,4%	
NORTH WEST	22 496	5%	2 624	11,7%	
NORTHERN CAPE	4 415	1%	205	4,6%	
WESTERN CAPE	35 817	8%	5 959	16,6%	
UNKNOWN	9 286	2%	447	4,8%	
Grand Total	477127	100%	48081	10,1%	

7. Challenges with Antigen Testing

Implementation

	Stakeholder Engagement	Delays at CLI phase; responsibility/re-imbursement
	Training	 Alignment on Used TOT ASLM modules: 23 certified, >160 master trainers Modified to local context, videos
	Quality Indicators	Understanding training requirements and implementing the training programmes across all sites nationally
	Supply chain	 Challenges getting materials and reagents into the country due to movement restrictions and logistics issues Regulatory delays
ini	HR	 Critical staff (lab technical and supporting) contracting COVID-19, amidst the current shortages of people Data admin issues delay
10	Scaling up and capability	Different lab /clinical groups may need assistance in scaling up and building capabilities required

Future-proofing testing: digital patient-centric care

٠

- eLABS Ag-testing module developed
- eLABS scale up in over 1500 facilities in SA and 900 facilities in Zambia
- MVP for COVID-19 self-registration and self-sampling scoped with BMGF

CHALLENGES WITH ANTIGEN TESTING

Future of testing

- Remain agile and flexible with testing profiles
 - Rapid Expansion of testing: through public and private sectors
 - Use of spare capacity for HPV, STIs, oncology: Improved agility
 - Expansion of POCT strategy: Best use case
 - Maintenance of laboratory sites: Multi-disciplinary testing
 - Ongoing quality monitoring: Real-time
 - Re-evaluation of certain assays as variants emerge
 - Rapid PCR development as variants emerge
 - 9 Increased genomic testing capacity
 - Patient centric, own data, own monitoring, O₂ sats monitoring
 - Self-collection and self-testing: Healthcare worker safety

NATIONAL HEALTH LABORATORY SERVICE National Priority Programmes

Acknowledgements

- National Department of Health
- Ministerial Advisory Committee
- NHLS and the National Priority Program
- NHLS QAD
- Department of Molecular Medicine and Haematology, Wits University,
- Virology and TB Expert working groups
- Funders
- Clinical partners
- Commercial collaborators
- Innovators

SARS-CoV-2 B.1.351 (501Y.V2)

Molecular

- Variant isolates to be sent from AHRI (mid-February) and will be cultured at CBTBR
- 2 variants
 - 001 with the full complement of mutations including L18F
 - 002 with a deletion in the Furin site from Vero E6 passage
- Culture panels (dilution; original and novel variants) will be shared with testing laboratories
- Impact of variants on diagnostic assays in use will be assessed
 - Novel assay evaluations will include original and novel culture isolates
- CQM of Ct values and gene-dropout
- Sharing of patient specimens for genomic studies <u>Serology</u>
 - Assess approved tests using residual serum/plasma (vaccine group)
- Increase serology specimen biorepository (national)
 Antigen
 - Currently no Ag tests use the S-protein
 - Discussions with PATH re use of protein panels

- Key Variant Diagnostics Collaborators
- NHLS virology expert committee
- National Institute of Communicable Diseases
- Kwazulu-Natal Research Innovation and Sequencing Platform
- Africa Health Research Institute
- **CBTBR Bavesh Kana and team**
- Private laboratories
- PATH

