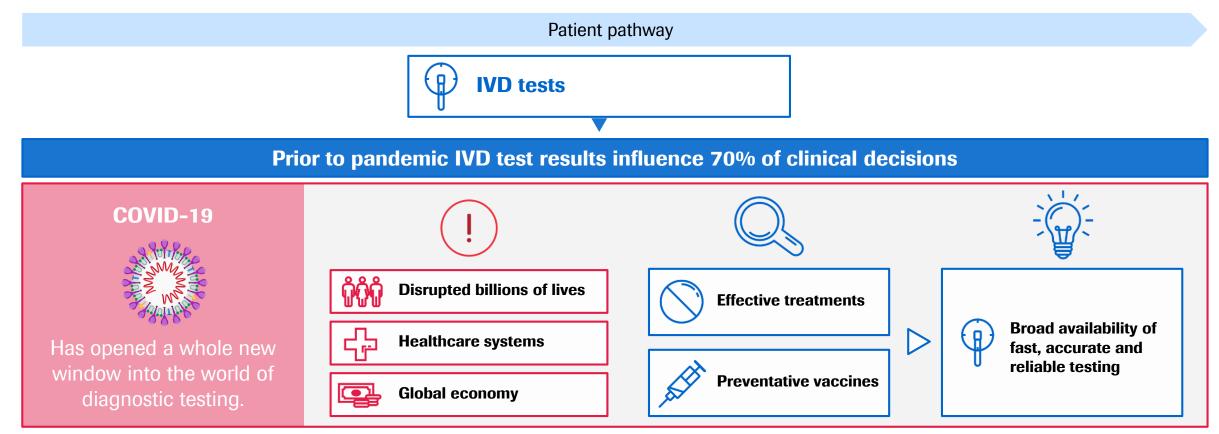

Roche SARS-CoV-2 diagnostic testing

ASLM ECHO session #18, July 10th 2020

Dr. Wim van der Helm, MD - Healthcare Development EMEA-LATAM – Global Access Program

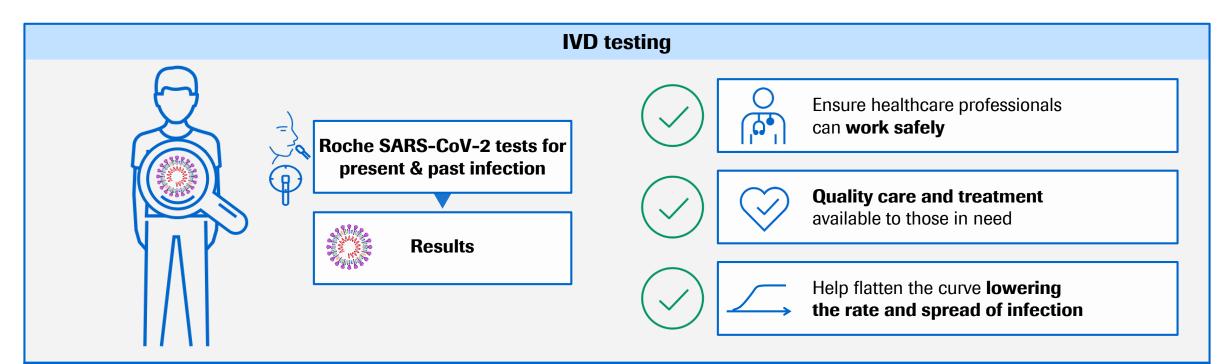


All statements made in this document are based on the current state of scientific literature

July 2020

Value of Diagnostic Tests in the New World of COVID-19 Pandemic Roch The Problem The State

In vitro diagnostic (IVD) tests are an essential service in the delivery of healthcare



https://pubs.rsna.org/doi/10.1148/radiol.2020201845, https://healthmanagement.org/c/imaging/news/value-of-diagnostic-tests-in-world-of-covid-19, https://www.medtecheurope.org/access-tomedical-technology/value-of-diagnostic-information-vodi/, https://www.medtecheurope.org/covid-19-information-hub/, https://www.roche.com/about/business/diagnostics/medical_value/testing-forcoronavirus.htm, https://www.roche.com/about/business/diagnostics/medical_value/testing-for-coronavirus.htm

Value of Diagnostic Tests in the New World of COVID-19 Pandemic *Roche solution*

In vitro diagnostic (IVD) testing plays a vital role in testing who may have contracted COVID-19

Kocľ

High quality **diagnostics** aid more accurate disease identification, leading to more appropriate patient care.

https://pubs.rsna.org/doi/10.1148/radiol.2020201845, https://healthmanagement.org/c/imaging/news/value-of-diagnostic-tests-in-world-of-covid-19, https://www.medtecheurope.org/access-tomedical-technology/value-of-diagnostic-information-vodi/, https://www.medtecheurope.org/covid-19-information-hub/, https://www.roche.com/about/business/diagnostics/medical_value/testing-forcoronavirus.htm, https://www.roche.com/about/business/diagnostics/medical_value/testing-for-coronavirus.htm

"Could they still transmit" "Have they previously been" "Should I advise isolation?" infected with the virus?" the virus?" Has a person previously been Is a person **currently infected** with SARS-CoV-2? infected with SARS-CoV-2?*

What are we trying to find out?

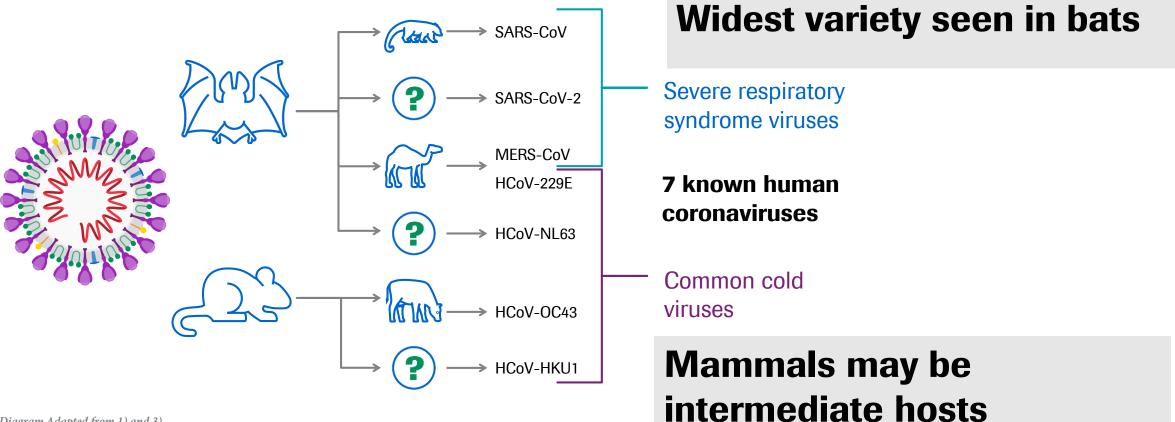
Testing Objectives

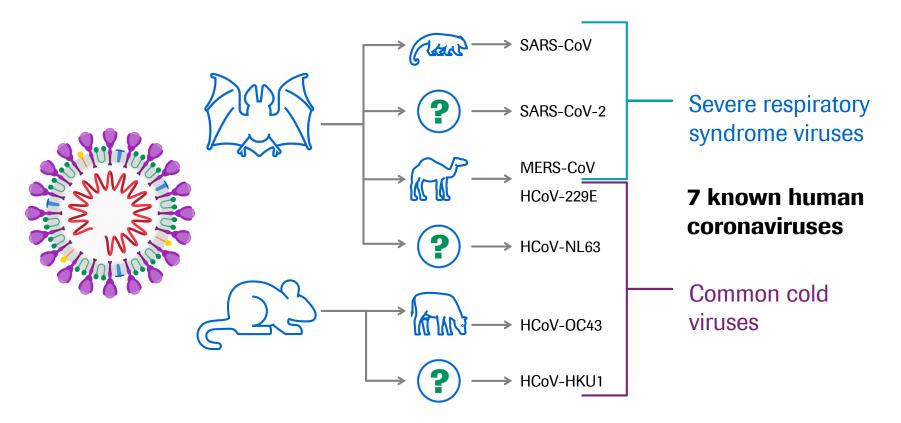
https://www.cdc.gov/coronavirus/2019-ncov/index.html, . World Health Organization. "Immunity passports" in the context of COVID-19 https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19

*It should be noted that currently there is no robust evidence that people who have recovered from COVID-19 and have antibodies are protected from a second infection

Human coronaviruses are zoonotic

Originate in animals and can infect humans




Diagram Adapted from 1) and 3)

1. Zhu, N et al. (2020). N Engl J Med 2020;382:727-33; 2. Cui J, Li F, Shi ZL (2019). Nature Reviews. Microbiology. 17 (3): 181–92; 3. Su, S et al. (2016). Trends in Microbiology. 24 (6): 490–502; 4. Huynh J et al. (2012). Journal of Virology. 86 (23): 12816–25; 5. Masters PS (2006). Advances in Virus Research. Academic Press. 66: 193-292; 6. Vijgen, L. (2005). Journal of Virology. 79 (3): 1595-1604

Human coronaviruses are zoonotic

Originate in animals and can infect humans

Two previous outbreaks:

- Severe acute respiratory syndrome
 – SARS-CoV (2002; China)
- Middle East respiratory syndrome

 MERS-CoV (2012; Saudi Arabia)

Diagram Adapted from 1) and 3)

1. Zhu, N et al. (2020). N Engl J Med 2020;382:727-33; 2. Cui J, Li F, Shi ZL (2019). Nature Reviews. Microbiology. 17 (3): 181–92; 3. Su, S et al. (2016). Trends in Microbiology. 24 (6): 490–502; 4. Huynh J et al. (2012). Journal of Virology. 86 (23): 12816–25; 5. Masters PS (2006). Advances in Virus Research. Academic Press. 66: 193–292; 6. Vijgen, L. (2005). Journal of Virology. 79 (3): 1595–1604

SARS-CoV-2 infection causes **COVID-19**

*Signs and Symptoms – an Overview*¹⁻⁷

Transmission

Person-to-person via respiratory secretions; indirectly through contaminated surfaces

Clinical presentation

Asymptomatic infection, mild illness, pneumonia, or fatal disease

Incubation

Range of 2–14 days (median – 5 days)

Clinical progression

and multi-morbid patients

Can cause severe respiratory disease, especially in 65+

Main Symptoms

Fever, respiratory symptoms, Anosmia, diarrhea, vomiting, headache, myalgia

Case fatality rate*

Reported mortality rates vary from 0.8-15.5% (average 6.5%) * CFR is unreliable during an outbreak

(1) Chen N et al. (2020). Lancet. 2020;395:507-13; (2) Holshue ML et al. (2020). N Engl J Med. 382:929-36; (3) Huang C et al. (2020). Lancet 395:497-506;
(4) Wang D et al. (2020).. JAMA 323:1061-1069; (5) CDC. <u>https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html</u>
(6) Wu JT et al (2020). Lancet 395:689-97; (7) <u>https://informationisbeautiful.net/visualizations/covid-19-coronavirus-infographic-datapack/</u>

COVID-19: risk factors for severe disease and death

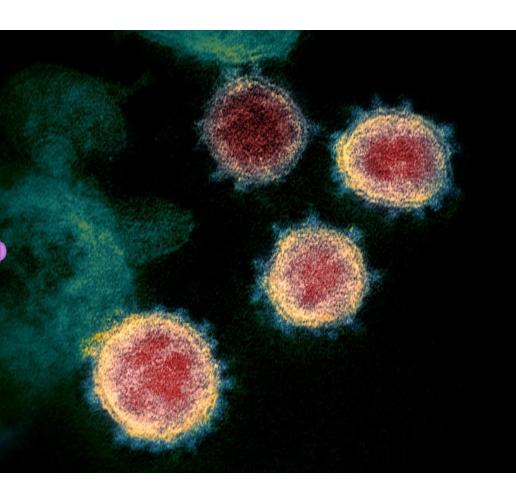
Accumulating evidence¹

Evidence is rapidly accumulating about risk factors for COVID-19 progression, with data suggesting that the following factors may be associated with increased risk of severe disease and/or mortality

The relative importance of different underlying health conditions is unclear, owing to:

Inadequate adjustment for important confounding factors, insufficient follow-up, and likely under-reporting of preexisting conditions Studies are mainly among those patients at the highest risk admitted to hospital with full testing and **might not apply to the general population**

Coronaviruses


Virion morphology and structural proteins

Large enveloped RNA viruses (80-120 nm)

Lipid bilayer

Nucleocapsid

Multiple copies of the **nucleocapsid (N protein)** bound to the RNA genome

Following the infection path...

Viral transmission

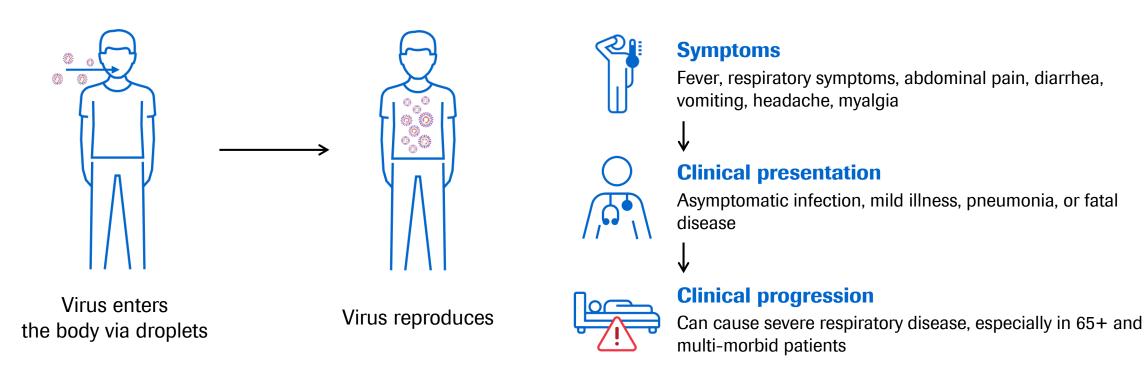
Virus enters the body via droplets

Transmission

Incubation

Range of 2–14 days (median – 5 days)

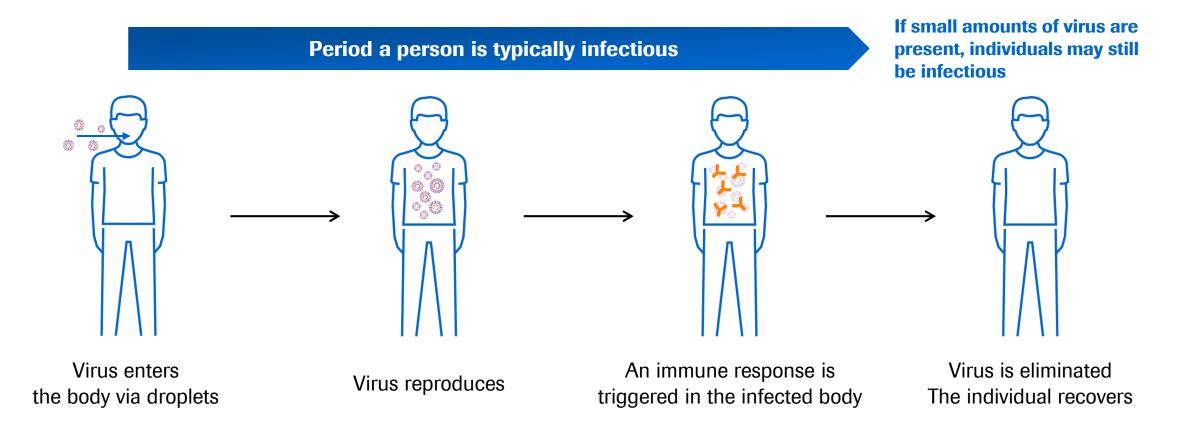
Person-to-person via respiratory secretions; indirectly through contaminated surfaces


1. Li Q, et al. N Engl J Med (2020);doi.10.1056/NEJMoa2001316. 2. Backer JA, et al. Euro Surveill (2020);252000062.; 3. The World Health Organization https://www.who.int/newsroom/q-a-detail/q-a-coronaviruses. Accessed 28 April 2020. 4. Zhou F, et al. Lancet (2020);395:1054–62. 5. Wu Y, et al. Lancet (2020);S2468–1253:30083. 1. Chen N, et al. Lancet (2020);395:507-513. PMID: 32007143; 2. Holshue ML, et al. N Engl J Med (2020);382:929–936. PMID: 32004427; 3. Huang C, et al. Lancet (2020);395:497–506. PMID: 31986264; 4. Wang D, et al. JAMA. (2020);323:1061–1069. PMID: 32031570; 5. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-July 1 criteria.html. Accessed March 4, 2020; 6. Wu JT, et al. Lancet (2020);395:689–697

Following the infection path...

Viral reproduction in host cells of lung

Broad range of symptoms and clinical presentation

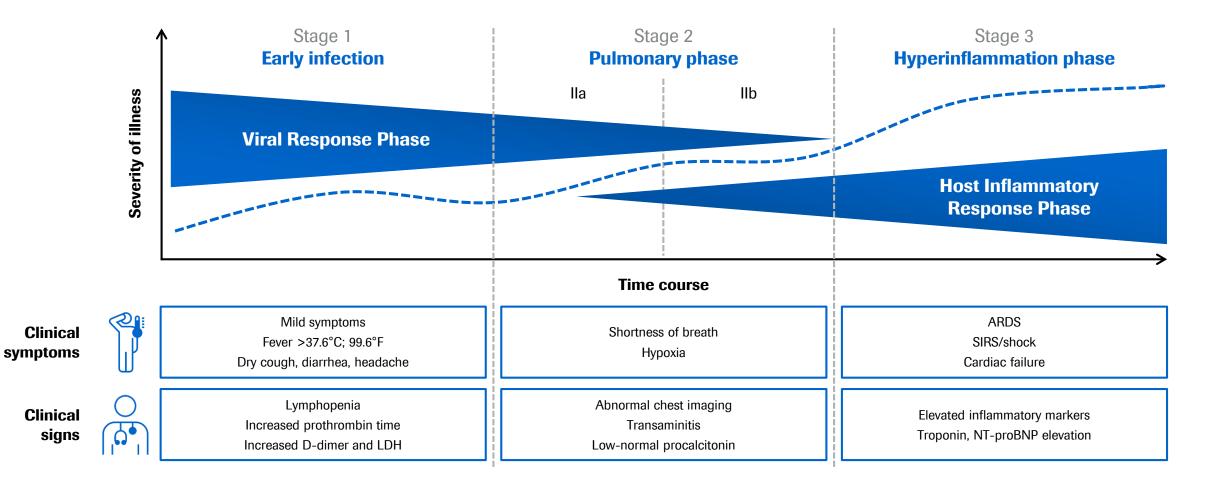


1. Li Q, et al. N Engl J Med (2020);doi.10.1056/NEJMoa2001316. 2. Backer JA, et al. Euro Surveill (2020);252000062.; 3. The World Health Organization https://www.who.int/news-room/q-a-detail/q-a-coronaviruses. Accessed 28 April 2020. 4. Zhou F, et al. Lancet (2020);395:1054–62. 5. Wu Y, et al. Lancet (2020);S2468–1253:30083. 1. Chen N, et al. Lancet (2020);395:507-513. PMID: 32007143; 2. Holshue ML, et al. N Engl J Med (2020);382:929–936. PMID: 32004427; 3. Huang C, et al. Lancet (2020);395:497–506. PMID: 31986264; 4. Wang D, et al. JAMA. (2020);323:1061–1069. PMID: 32031570; 5. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html. Accessed March 4, 2020; 6. Wu JT, et al. Lancet (2020);395:689–697

Following the infection path...

Stages of transient viral infections

1. Li Q, et al. N Engl J Med (2020);doi.10.1056/NEJMoa2001316. 2. Backer JA, et al. Euro Surveill (2020);252000062.; 3. The World Health Organization https://www.who.int/news-room/q-a-detail/q-a-coronaviruses. Accessed 28 April 2020.


4. Zhou F, et al. Lancet (2020);395:1054-62. 5. Wu Y, et al. Lancet (2020);S2468-1253:30083.

Clinical stages of COVID-19

Potential therapeutic approaches

COVID-19 testing recommendations

Criteria to guide evaluation and laboratory testing for COVID-19

https://www.cdc.gov/coronavirus/2019nCoV/hcp/clinical-criteria.html

Laboratory support for COVID-19 in the EU/EEA

https://www.ecdc.europa.eu/en/novelcoronavirus/laboratory-support

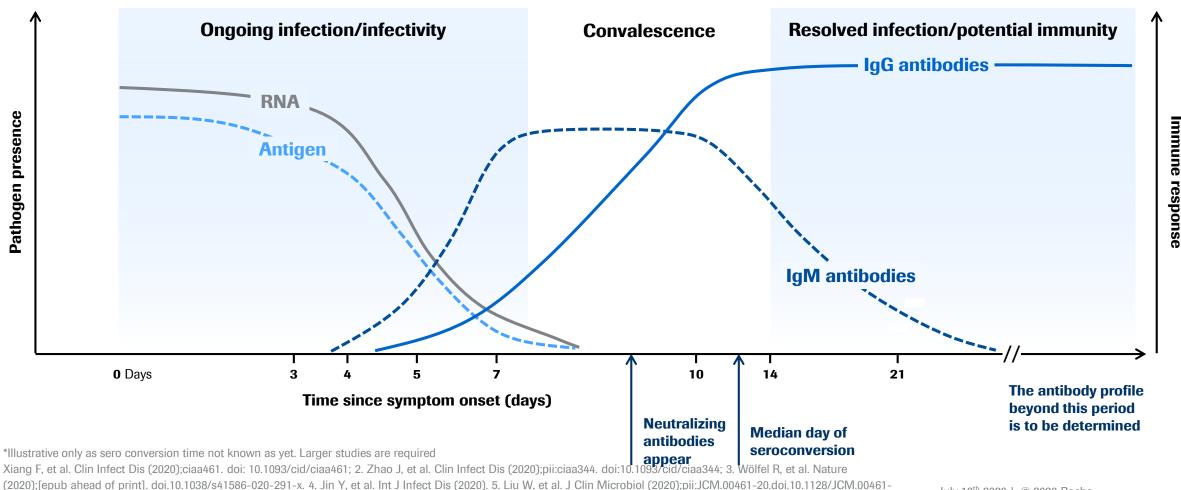
Laboratory testing strategy recommendations for COVID-19

https://www.who.int/emergencies/diseases/novelcoronavirus-2019/technical-guidance/laboratoryguidance

In summary:

Nucleic Acid Amplification Test (NAAT) for diagnosis

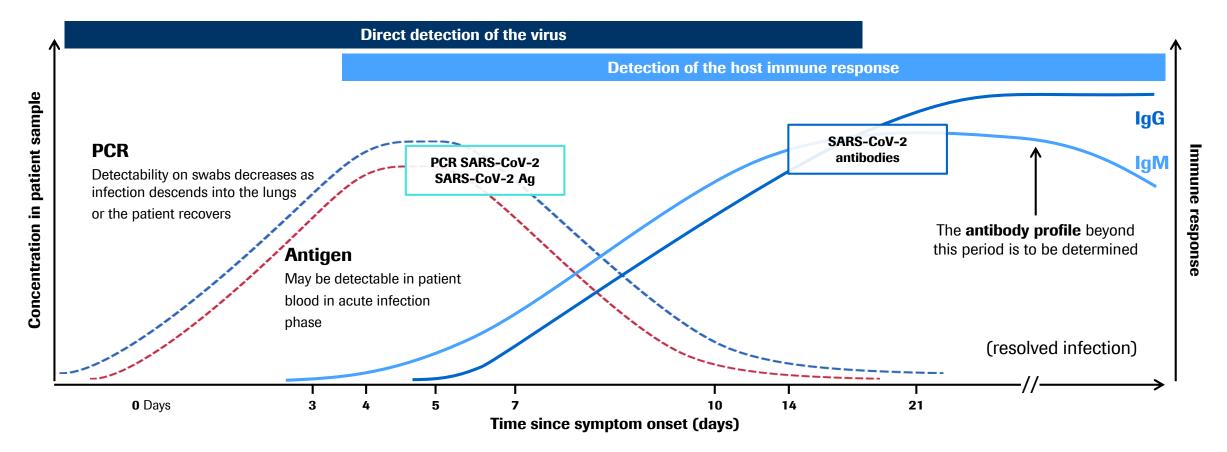
Testing is needed to inform clinical decision making and public health policy


Prioritization of testing is needed when the availability of testing is limited

Course of molecular and serological biomarkers*

20. 6. Guo L, et al. Clin Infect Dis (2020); doi.10.1093/cid/ciaa310. 7. Zhang W, et al. Emerg Microb Infect;9:386-389.

SARS-CoV-2 infection

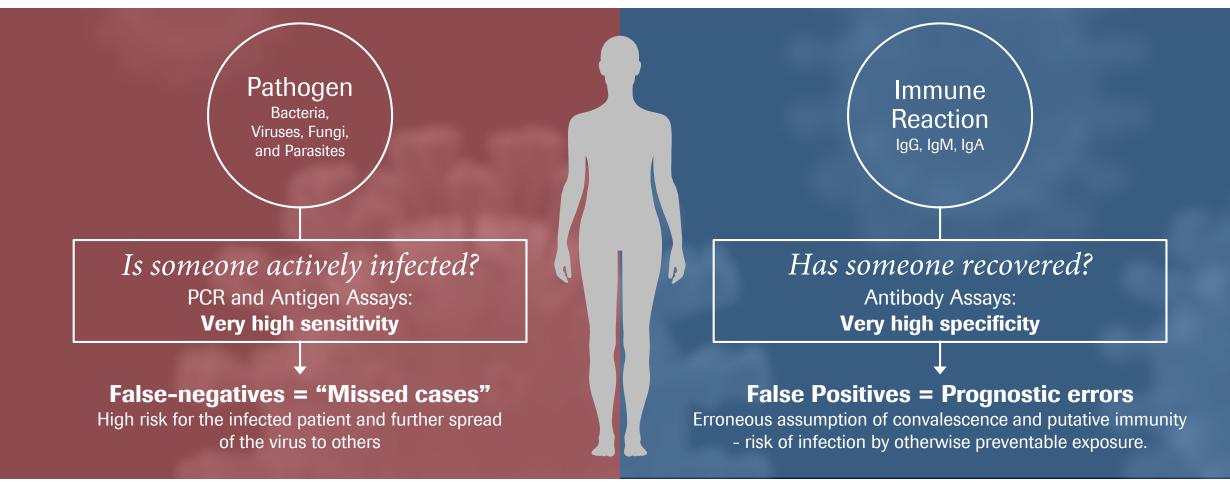


July 10th 2020 | © 2020 Roche

Assessing the response to infection

Opportunities for detection of SARS-CoV-2 infection & recovery phases*

* Illustrative only as sero conversion time not known as yet. Larger studies are required
1. Xiang F, et al. Clin Infect Dis (2020);ciaa461. doi: 10.1093/cid/ciaa461; 2. Zhao J, et al. Clin Infect Dis (2020);pii:ciaa344. doi:10.1093/cid/ciaa344; 3. Wölfel R, et al. Nature
(2020);[epub ahead of print]. doi.10.1038/s41586-020-291-x. 4. Jin Y, et al. Int J Infect Dis (2020). 5. Liu W, et al. J Clin Microbiol (2020);pii:JCM.00461-20.doi.10.1128/JCM.00461-20.doi.
20. 6. Guo L, et al. Clin Infect Dis (2020); doi.10.1093/cid/ciaa310. 7. Zhang W, et al. Emerg Microb Infect; 9:386-389..


July 10th 2020 | © 2020 Roche

IOC

SARS-CoV-2 infection

Molecular and serology tests serve different use cases

Elecsys® Anti-SARS-CoV-2

Intended use

Elecsys[®] Anti-SARS-CoV-2 is an immunoassay for the in vitro **qualitative detection of antibodies (including IgG)** to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in human serum and plasma. The test is intended as an aid in the determination of the immune reaction to SARS-CoV-2.

The electrochemiluminescence immunoassay "ECLIA" is intended for use on Elecsys[®] and **cobas e** immunoassay analyzers.

July 10th 2020 | © 2020 Roche

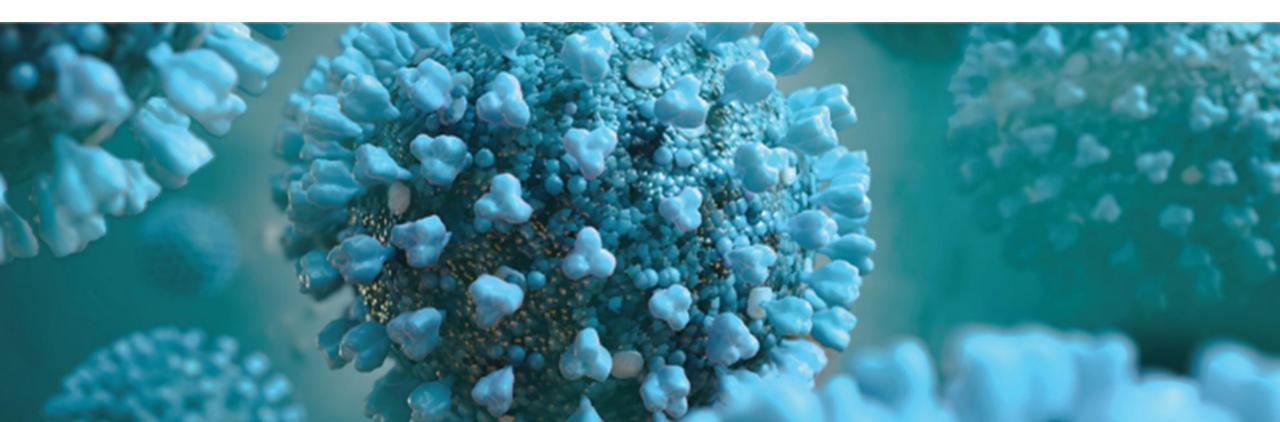
Elecsys Anti-S

Links to educational & technical material

Our commitment to help put a stop to the COVID-19 pandemic

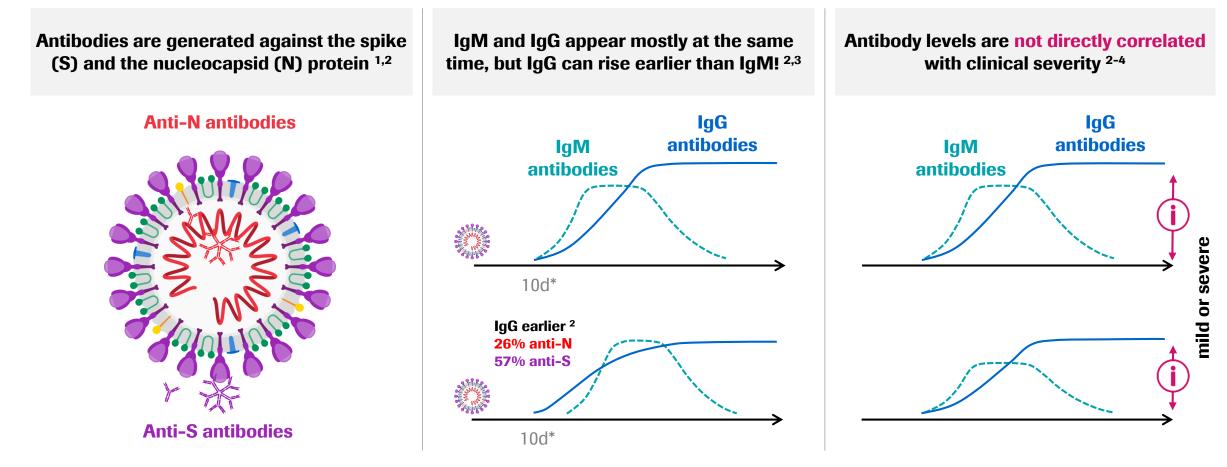
Real-time RT-PCR test	Antibody test
Detecting SARS-CoV-2 in currently infected patients with high sensitivity	Detecting a patient's immune response to SARS CoV-2 with high specificity
The cobas[®] SARS-CoV-2 Test is a real-time RT-PCR test intended for the qualitative detection of SARS-CoV-2 in nasopharyngeal and oropharyngeal swab samples from patients. This test can run on Roche's fully automated cobas[®] 6800 and cobas[®] 8800	The Elecsys [®] Anti-SARS-CoV-2 is an immunoassay for the in vitro qualitative detection of antibodies (including IgG) to SARS-CoV-2 in human serum and plasma. The test is intended as an aid in the determination of the immune reaction to SARS-CoV-2.
Systems under Emergency Use Authorization. The test is also available for countries accepting the CE-mark.	The electrochemiluminescence immunoassay "ECLIA" is intended for use on cobas e immunoassay analyzers.
cobas [®] SARS-CoV-2 Test 💿	
cobas [®] 6800 System 🕟	Elecsys® Anti-SARS-CoV-2 🕥
cobas [®] 8800 System 🕟	cobas e 411 analyzer 💿
	cobas e 601 module 🕥
	cobas e 602 module 🕥
	cobas e 801 module 🕥

https://diagnostics.roche.com/global/en/c/covid-19-pandemic.html


https://dialog.roche.com/global/en_us/covid/run2.html

Roche SARS-CoV-2 diagnostic testing

ASLM echo session, July 10th 2020


Dr. Matthias Strobl, Senior Clinical Science Leader - Infectious Diseases

Serum antibody responses during infection by SARS-CoV-2

Anti-SARS-CoV-2 IgM is not a specific indicator of early infection

(1) Okba NMA, Müller MA, Li W, Wang C, et al. medRxiv 2020.03.18.20038059;
 (2) To KKW et al. (2020). Lancet Infect Dis 2020; DOI:10.1016/S1473-3099(20)30196-1
 (3) Wu F et al. medRxiv 2020.03.30.20047365; doi: <u>https://doi.org/10.1101/2020.03.30.20047365</u>;
 (4) Long et al. (2020). Nat Med. https://doi.org/10.1038/s41591-020-0897-1

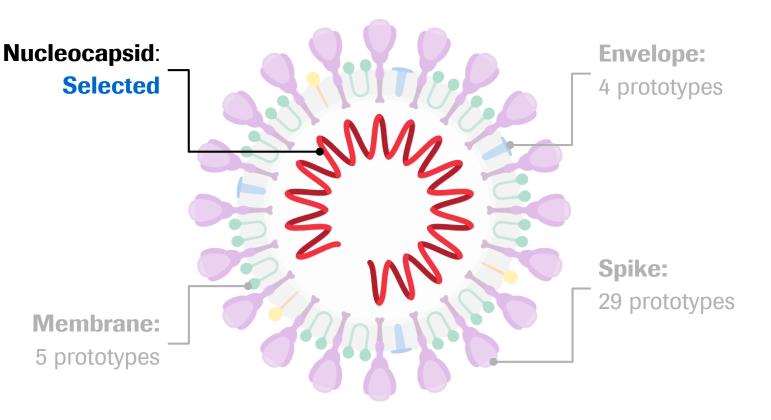
*after symptom onset

Nucleocapsid selected as target antigen

Elecsys[®] Anti-SARS-CoV-2

N selected based on experimental data and manufacturability:

 \bigcirc


- Performed better than all other targets in several hundred clinical samples
- \bigcirc
- Can be synthesized in soluble form

Large-scale production in a fast and reliable manner

Main performance requirement for selection:

Considerations when testing for SARS-CoV-2 antibodies

Epidemiological screening

For SARS-CoV-2 epidemiological screening, the aim is to **correctly identify** all patients who have been **exposed to the SARS-CoV-2** to better understand the prevalence, epidemiology and dynamics of the virus and COVID-19^{1,2}

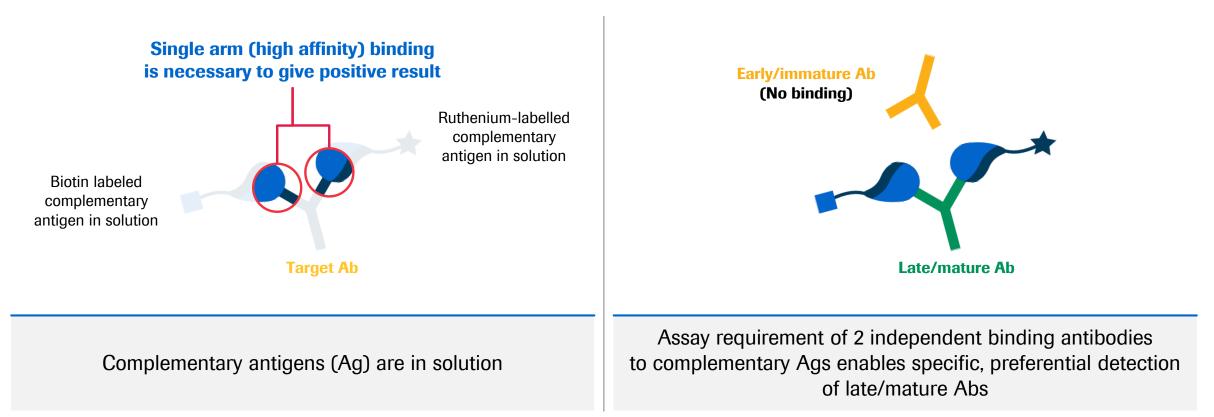
For this purpose, a **high positive predictive value** is highly desirable²

Given that **levels** and **chronological** order of IgM and IgG antibody appearance are **variable**, targeting both antibodies simultaneously following a total antibody approach may be beneficial for increasing the **sensitivity** of a test^{3,4}

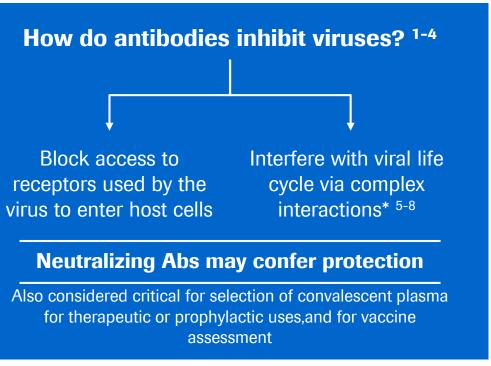
1. Patel R, *et al.* mBio (2020);11: pii: e00722-20. doi: 10.1128/mBio.00722-20 ; 10. Wu LP, *et al.* Emerg Infect Dis. 2007.13:1562-4; 2. Trevethan R. Front Public Health 2017 5(307); doi: 10.3389/fpubh.2017.00307 3. To K *et al.* Lancet *Infect Dis* 2020. doi:10.1016/S1473-3099(20)30196-1; 4. Zhao J, *et al.* lin *Infect Dis* 2020; doi: 10.1093/cid/ciaa344.

Considerations when testing for SARS-CoV-2 antibodies^{1,2}

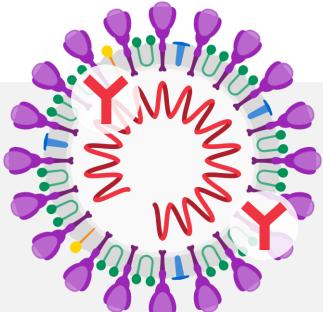
Antibody maturity


Ab Main Types \rightarrow	Early/Immature	Mature	Neutralizing	
Description	 Appear in <u>early</u> <u>infection</u> phase Do not effectively recognize the virus 	 Appear in <u>convalescent</u> phase Effectively recognize the virus 	 Appear in <u>convalescent/</u> <u>immunity</u> phase Effectively neutralize the virus 	Targeting mature
Examples	lgM, early/immature lgA, lgG	Late/mature lgs	Neutralizing antibodies (<i>sub-set of mature Igs</i>)	antibodies may be beneficial in increasing testing specificity
Relevance/ Purpose	Initial host response to start understanding the virus	Host memory of the virus for future recognition	Render the virus ineffective against the host	lesting specificity

Fit for Purpose Antibody Assay Formats


Mature High Affinity Total Antibody Assay

In-solution Double Antigen Sandwich²


SARS-CoV-2 neutralizing antibodies

Spike vs nucleocapsid as target antigen

Studies show **anti-nucleocapsid & anti-spike Ab** <u>correlate</u> with neutralization, i.e. putative clinical immunity ⁹⁻¹¹

In the Elecsys[®] assay format, the nucleocapsid antigen confers high specificity

* Examples of non-neutralizing complex interactions²⁻⁴: 1) Tagging cells for destruction by effector cells before viruses have a chance to exit (e.g. antibody-dependent cellular cytotoxicity (ADCC); 2) Induction of complement-mediated cytolysis, increased T cell responses associated with enhanced dendritic cell function, and reduced viral replication in culture; 3) Cooperatively elicit robust protective immunity when combined virus-specific CD8 T cells⁴ NOTE: also cellular immunity plays a role^{6,7}

(1) Burton, D (2002). Nat Rev Immunol 2, 706–713; (2) Payne S (2017). Viruses: Chapter 6 - Immunity and Resistance to Viruses, Editor(s): Susan Payne, Academic Press; (3) Coughlin MM (2012). Rev Med Virol. 22(1):2–17.; (4) Zhou G et al. (2020). Int J Biol Sci;16(10):1718–1723; (5) Murin CD et al. (2019). Nat Microbiol 4, 734–747, (6) Damian M et al. (2008). J Immunol;181(6):4168-4176; (7) Laidlaw BJ et al. (2013). PLoS Pathog 9(3): e1003207; (8) Enayatkhani M et al. (2020). PLoS Pathog 9(3): e1003207; (9) To K et al. Lancet Infect Dis. 20(5), 565-74; (10) Wu F et al. (2020). JAMA. 323(13), 1239-1242; (11) Okba N et al. medRxiv. 2020. preprint doi: https://doi.org/10.1101/2020.03.18.20038059

Correlation of Elecsys[®] Anti-SARS-CoV-2 with neutralization

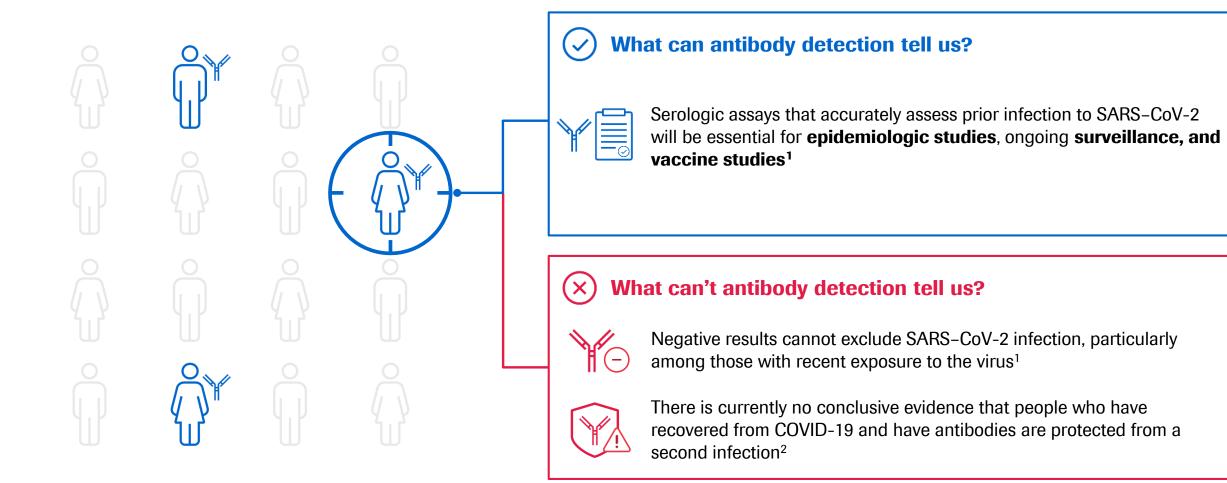
Positive correlation with neutralizing capacity

- A positive test result with Elecsys Anti-SARS-CoV-2 correlates well with neutralization capacity in the same sample.
- Number of negative samples is too low to determine specificity, but no false positive results were observed with Elecsys[®] Anti-SARS-CoV-2.

individual patients '							
	Pseudo-Neutralisation ²						
	Pos Neg Total						
Elecsys® Anti-SARS- CoV-2	Pos	38	0	38			
	Neg	6	2	8			
	Total	44	2	46			
РРА	86.4 % (73.3 % - 93.6 %)*						
PNA	100.0 % (34.2 % - 100.0 %)*						
POA	87.0 % (74.3 % - 93.9 %)*						

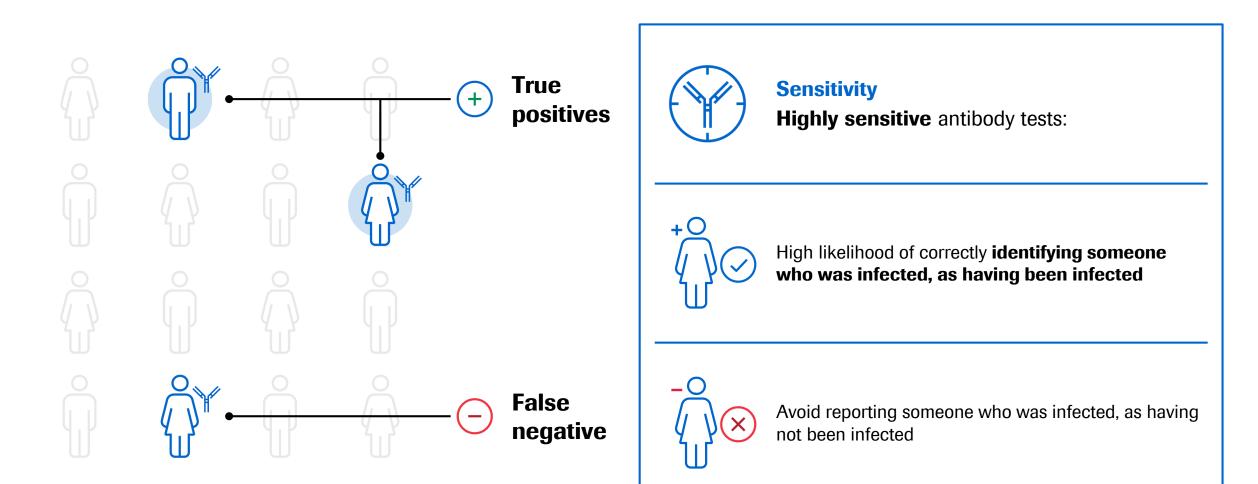
Roche internal study: 46 clinical samples from

PPA: percent positive agreement, PNA: percent negative agreement, POA: percent overall agreement; N: nucleocapsid, S: spike


* 95% confidence interval; # antibody tests were performed 49 days after PCR.

1) Roche, data on internal file; 2) Meyer B, Torriani G, Yerly S, et al. Validation of a commercially available SARS-CoV-2 serological Immunoassay. medRxiv. 2020. https://doi.org/10.1101/2020.05.02.20080879

What are the objectives for testing for antibodies to SARS-CoV-2



When testing for antibodies.....

Importance of sensitivity

1.Trevethan R. Front Public Health 2017 5(307); doi: 10.3389/fpubh.2017.00307 2.https://www.roche.com/media/releases/med-cor-2020-05-03.htm

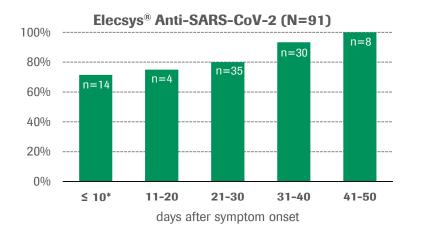
High clinical sensitivity in patients with proven past infection (extended data set)*

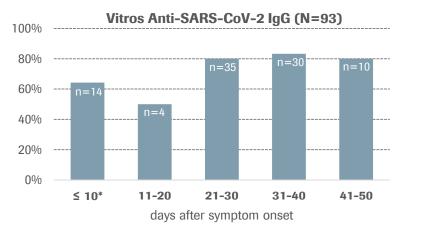
	496 samples from:
	103 symptomatic patients
\bigcirc	Tested with Elecsys® Anti-SARS-CoV-2
	One or more sequential specimens from these patients were collected after PCR confirmation at various time points

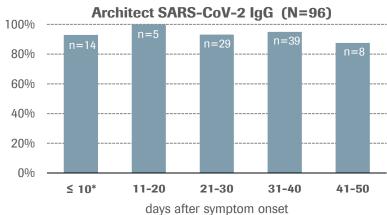
Days post PCR confirmation	N	Non- reactive	Sensitivity (95 % CI*)
0 – 6 days	161	64	60.2 % (52.3 – 67.8%)
7 – 13 days	150	22	85.3% (78.6 – 90.6%)
≥ 14 days	185	1#	99.5% (97.1 – 100%)
The second se			

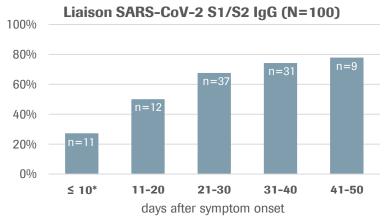
Elecsys[®] Anti-SARS-CoV-2 has 99.5% sensitivity in detecting antibodies after the reported median day of seroconversion

Roche Diagnostics GmbH, R&D department; Penzberg, Germany. R&D record ACOV2-113-118_sensi-speci *confidence interval; #1 patient was non-reactive at day 14 (0.696 COI) but reactive at day 16 (4.48 COI)

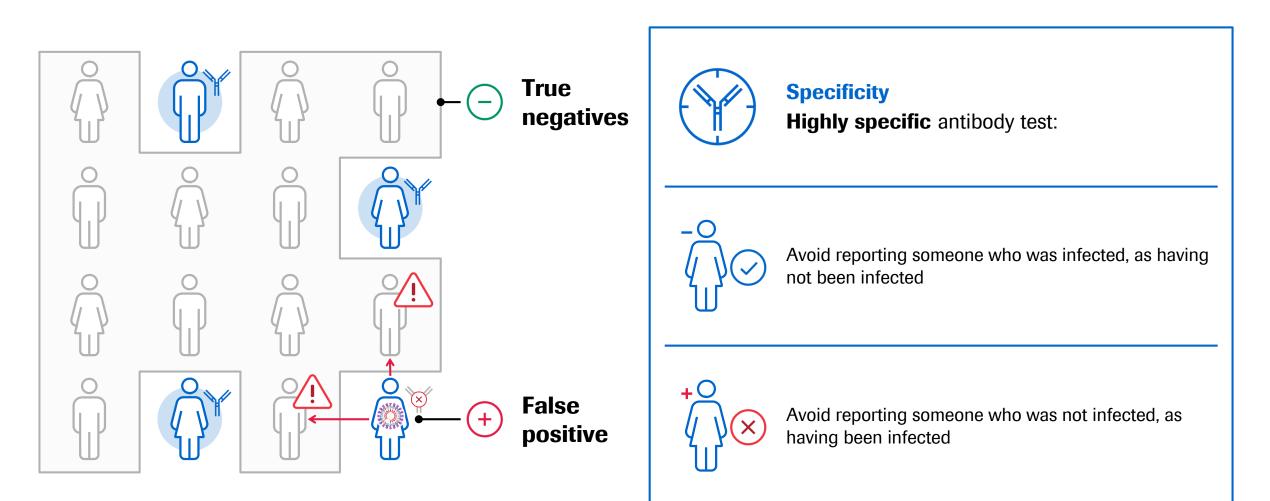

Clinical sensitivity


Public Health England assay evaluations


Sensitivity of Elecsys[®] increases with time after symptom onset, indicating correlation with seroconversion and/or increasing proportion of late, high-affinity antibodies.


Sensitivity of Architect at the same level across all time intervals indicating detection of low- and high-affinity antibodies.

Sensitivity of Vitros and Liaison is insufficient.

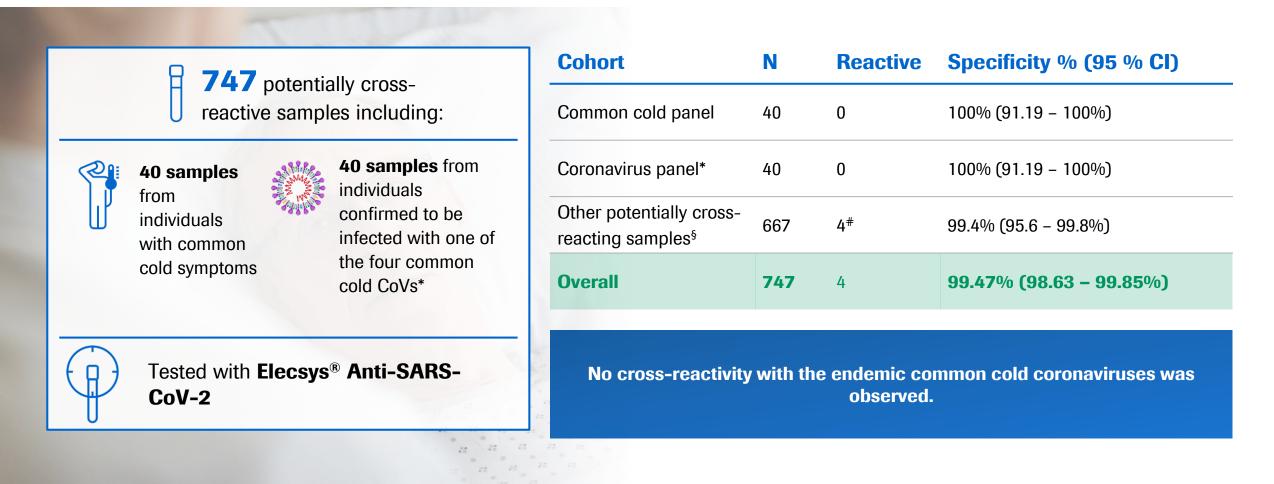


* unclear interval, as the date from admission into hospital was supplied rather than the date of symptom onset

When testing for antibodies.....

Roche

Importance of specificity


Fit-for-purpose clinical specificity proven in a large sample cohort

Brance	Cohort	Ν	Reactive	Specificity % (95 % CI)	
10533 samples from:	Diagnostic routine	6305	12	99.81 % (99.67 – 99.90 %)	
Diagnostic Blood donors	Blood donors	4148	9	99.78 % (99.59 – 99.90 %)	
routine	Common cold panel	40	0	100% (91.19 – 100%)	
A common cold panel A coronavirus panel* obtained before December 2019	Coronavirus panel*	40	0	100% (91.19 – 100%)	
~	Overall	10453	21	99.80 % (99.69 - 99.88 %)	
Tested with Elecsys [®] Anti-SARS-CoV-2	Elecsys [®] Anti-SARS-CoV-2 has 99.80% overall specificity.				
	No cross-reactivit	y with the	common col	d coronaviruses was observed.	

*40 potentially cross-reactive samples from individuals with past infection with coronavirus HKU1, NL63, 229E, or OC43, confirmed by PCR. Roche Diagnostics GmbH, R&D department; Penzberg, Germany. R&D record ACOV2-113-118_sensi-speci Elecsys® Anti-SARS-CoV-2 method sheet (v1, Apr 2020).

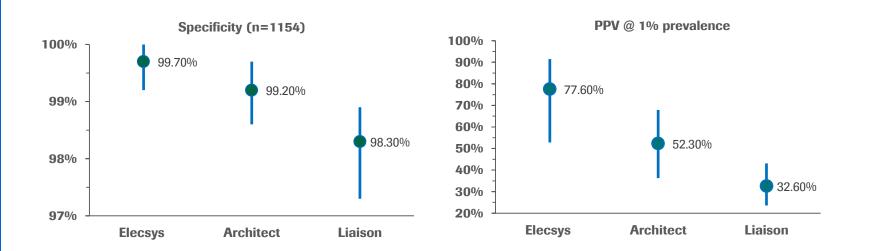
Fit-for-purpose clinical specificity proven in a large sample cohort

*from individuals with past infection with coronavirus HKU1, NL63, 229E, or OC43, confirmed by PCR; [§] Pre-pandemic samples with reactivity for various other indications, which could have an elevated potential for unspecific interference, were tested for reactivity in the Elecsys anti-SARS-CoV-2 assay; [#] acute CMV infection (IgM+, IgG+): 1; acute EBV infection (IgM+, VCA IgG+): 2; systemic lupus erythematosus: 1. Roche Diagnostics GmbH, R&D department; Penzberg, Germany. R&D record ACOV2-113-118_sensi-speci

July 10th 2020 | © 2020 Roche

Only assay confirmed to not cross-react with endemic coronavirus samples

	Roche	Abbott	DiaSorin	Biomérieux	OCD	Siemens	Beckman	Snibe	Mindray
Test name	Elecsys Anti-SARS- CoV-2	Architect SARS-CoV- 2 IgG	Liaison SARS-CoV- 2 S1/S2 IgG	Vidas SARS-COV- 2 IgM	Vitros Anti- SARS-CoV- 2 Total / IgG	Atellica SARS-CoV- 2 Total	Access SARS-CoV- 2 lgG	Maglumi 2019 n-CoV IgG	SARS-CoV- 2 lgG
HKU1, NL63, OC43 or 229E	40 samples	No data	Only 4 samples	No data	No data	No data	No data	No data	Only 5 samples
Interference	No interference	Potential interference	Missing NL63 229E	Missing NL63 229E	Potential interference	Potential interference	Potential interference	Potential interference	Missing NL63 HKU1

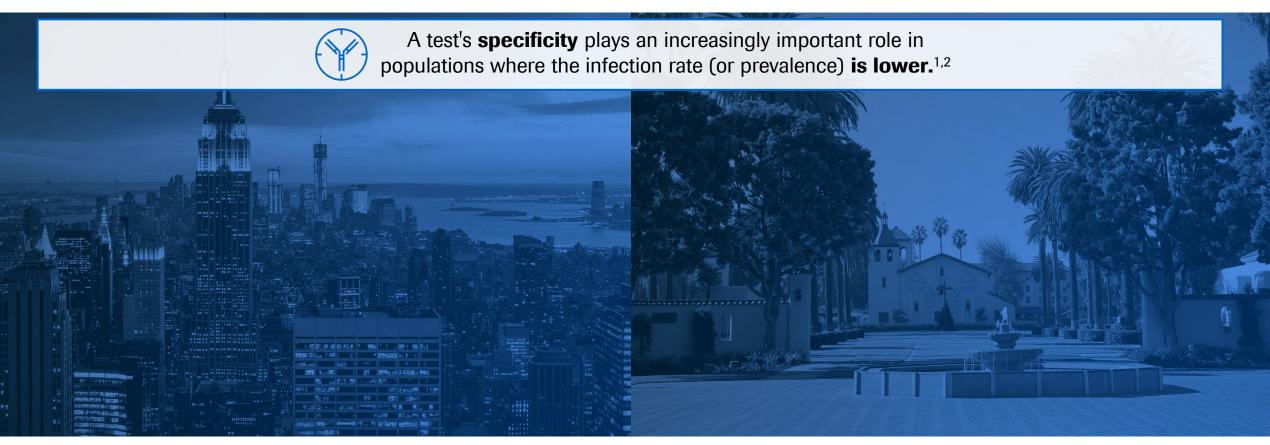

Elecsys Anti-SARS-CoV-2 Method sheet (April 2020); Snibe Maglumi 2019-nCoV IgG & IgM Method sheet (March 2020); Abbott Architect SARS-CoV-2 IgG Method Sheet (April 2020)

DiaSorin LIAISON* SARS-CoV-2 S1/S2 IgG Method Sheet (April 2020); Mindray SARS-CoV-2 IgG & IgM (CLIA) Method Sheet (March 2020); Ortho Clinical Diagnostics VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack Method Sheet (April 2020); Shenzhen Yhlo Biotech iFlash-SARS-CoV-2 IgG & IgM Flyer; Qian Ch, Zhou M, et al. 2020. Development and Multicenter Performance Evaluation of The First Fully Automated SARS-CoV-2 IgM and IgG Immunoassays. medRxiv preprint doi: https://doi.org/10.1101/2020.04.16.20067231.

Head-to-head comparison of three automated antibody assays

Elecsys® with highest PPV at low prevalence

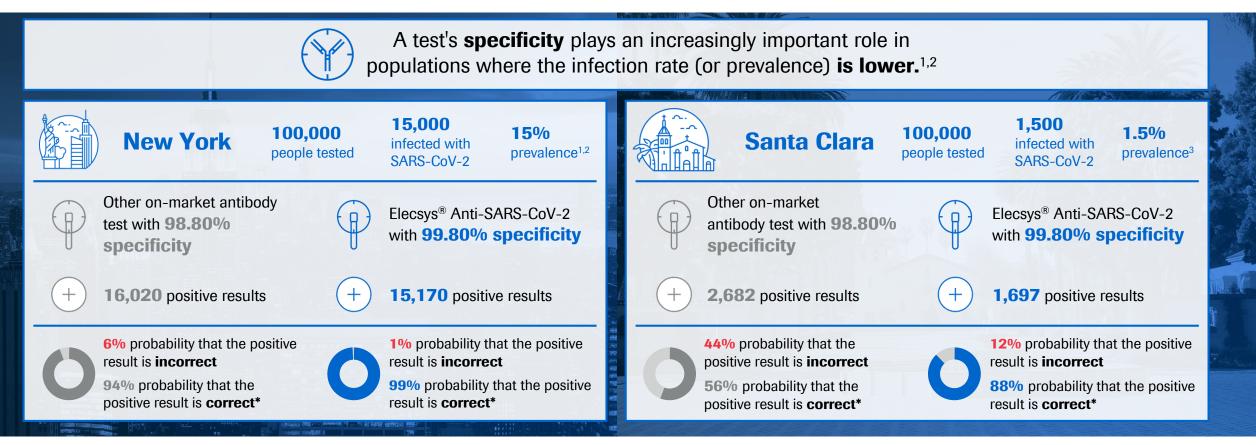
- While all three assays presented with high specificities, at low prevalence, the minor differences in specificity resulted in profound discrepancies of positive predictability.
- At 1% prevalence, the PPV values of Roche and DiaSorin differ so clearly that not even the 95% CI intervals overlap.



Perkmann T et al. Side by side comparison of three fully automated SARS-CoV-2 antibody assays with a focus on specificity. medRxiv 2020.06.04.20117911; doi: https://doi.org/10.1101/2020.06.04.20117911

The importance of a high-specificity test

A positive test result in New York is different from a positive test result in Santa Clara...


*The positive predictive value is the probability that persons with a positive test result truly have the disease. 1. Bonislawski, A. (2020, April 27). New York, California Serology Studies Give Early Estimates of COVID-19 Prevalence. Retreived from: https://www.360dx.com/infectious-disease/new-york-california-serology-studies-give-earlyestimates-covid-19-prevalence?utm_source=Sailthru&utm_medium=email&utm_campaign=360DN%20Tues%202020-04-28&utm_term=360Dx%20Daily%20News#.Xqv_4qgzZaR 2. Saplakoglu, Y., Writer, S. (2020, April 23). 1 in 5 people tested in New York City had antibodies for the coronavirus. Retrieved from: https://www.livescience.com/covid-antibody-test-results-new-york-test.html 3. Bendavid, E. et al. (2020, April 11). COVID-19 Antibody Seroprevalence in Santa Clara County, California. medRxiv preprint doi: https://doi.org/10.1101/2020.04.14.20062463

July 10th 2020 | © 2020 Roche

The importance of a high-specificity test

A positive test result in New York is different from a positive test result in Santa Clara...

*The positive predictive value is the probability that persons with a positive test result truly have the disease.

1. Bonislawski, A. (2020, April 27). New York, California Serology Studies Give Early Estimates of COVID-19 Prevalence. Retreived from: https://www.360dx.com/infectious-disease/new-york-california-serology-studies-give-earlyestimates-covid-19-prevalence?utm_source=Sailthru&utm_medium=email&utm_campaign=360DN%2020e0-04-28&utm_term=360Dx%20Daily%20News#.Xqv_4qgzZaR

2. Saplakoglu, Y., Writer, S. (2020, April 23). 1 in 5 people tested in New York City had antibodies for the coronavirus. Retrieved from: https://www.livescience.com/covid-antibody-test-results-new-york-test.html

3. Bendavid, E. et al. (2020, April 11). COVID-19 Antibody Seroprevalence in Santa Clara County, California. medRxiv preprint doi: https://doi.org/10.1101/2020.04.14.20062463

How does Elecsys[®] Anti-SARS-CoV-2 serology test provide value

An antibody detection test

The **Elecsys**[®] Anti-SARS-CoV-2 **immunoassay** is an *in vitro* test, using human serum and plasma drawn from a blood sample, to **detect total antibodies** (IgA, IgM and IgG) indicating an immune response to SARS-CoV-2

The test may be used:

_	
=	

In epidemiological research to help better understand the spread of the disease, especially in people who may have been infected but did not display symptoms

Together with **molecular tests** to aid in the *post hoc* diagnosis of suspected COVID-19 patients

Hospitals and reference laboratories can run the test on Roche's **cobas e** analysers, which are **widely available in laboratories around the world**

What are the unanswered questions for COVID-19 / SARS-CoV-2?

Do antibodies confer reliable immunity?

How long do antibodies confer immunity?

How long is a patient infective?

From when on is a patient protected?

Doing now what patients need next