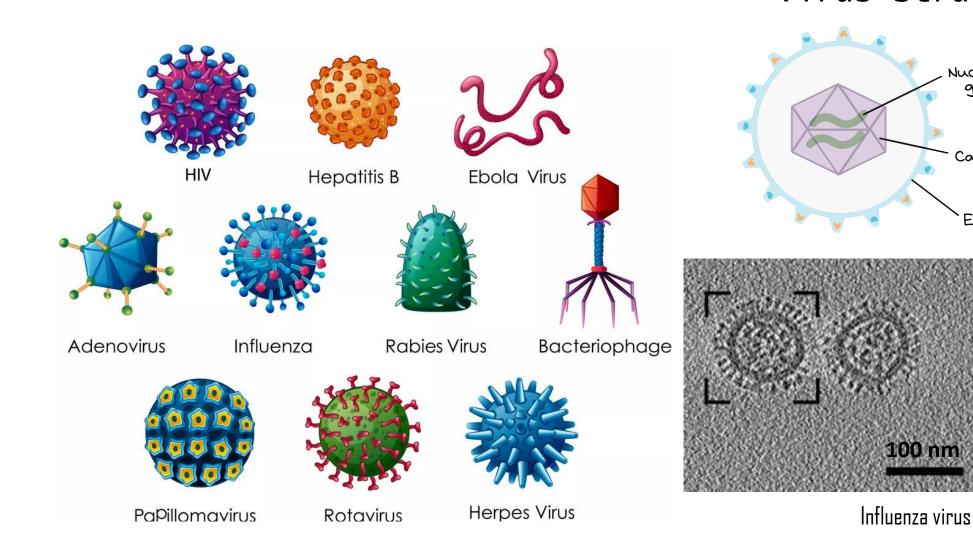


Facial Masks during COVID-19: Homemaking, Disinfection and Imaging

Prof. Yi Cui Department of Materials Science and Engineering, Stanford University Collaborators SLAC National Accelerator Laboratory Stanford: Prof. Steven Chu, Prof Larry Chu, Prof. Wah Chiu, Dr. Amy Price 4C Air Team: Dr. Lei Liao, Mervin Zhao and others The DeMaND Team: Prof. May Chu (Colorado), Selcen Kilinc-Balci (CDC/NIOSH), Brian H. Harcourt (CDC) Ying Ling Lin (WHO) and many others


Virus sizes: 20 nm to 400 nm

SARS-COV-2 (~150nm)

- related to SARS
 - and MERS
- spread *via* close
 - contact
- infect lung cells
- cause pneumonia

Image adapted from Google

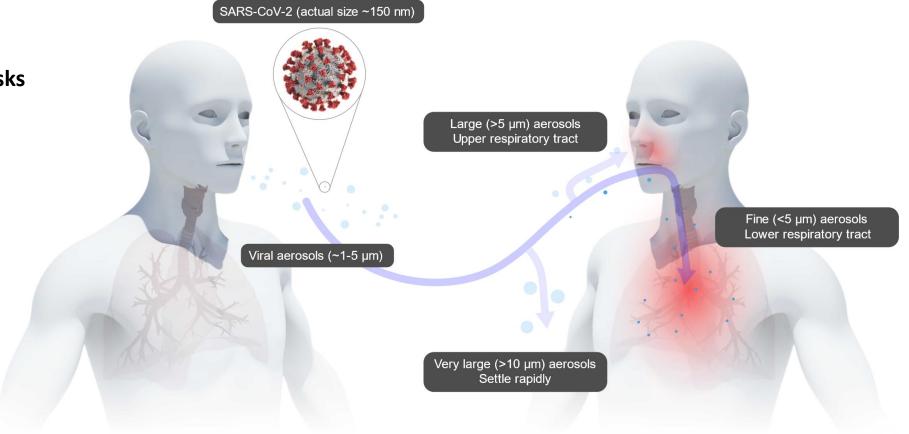
Stanford ENGINEERING Materials Science & Engineering

Virus Structure

100 nm

Nucleic acid

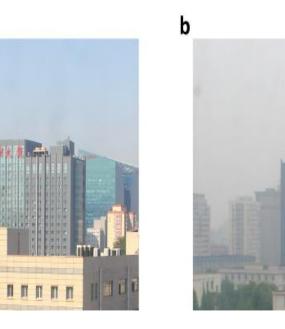
genome


Envelope

Capsid

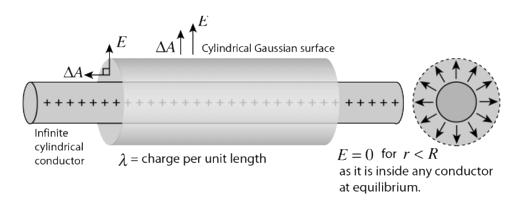
Stanford ENGINEERING Materials Science & Engineering

After seconds (depending on humidity) , droplets evaporate in air to become aerosols (<1 μ m), which stay in air for days.


Indoor: wearing masks Outdoor: If crowded, wearing masks

https://www.medrxiv.org/content/10.1101/2020.04.01.20050443v1

Filtration materials in mask


Stanford ENGINEERING Materials Science & Engineering

 Micronsize fibers (1-10 µm) forming 3D structures with porosity~90%
Need electric static charge to increase particle capture efficiency

For $r \geq R$

 $E = \frac{\lambda}{2\pi\varepsilon_0 r}$

Spunbond fibers: 10-40 µm diameter Meltblown fibers: 1-10 µm diameter

http://hyperphysics.phyastr.gsu.edu/hbase/electric/elecyl.html

Homemade masks

Community-made masks From Prof. May Chu

Product images:

Sample Description:

The hand-made masks appear to be a four - layer structure comprised of woven – spunbond – spunbond - woven. The spunbonded material is the standard Oly-Fun Fabric which can be bought online (<u>https://www.hobbylobby.com/Fabric-Sewing/Utility-Fabrics/Multi-Purpose-Fabric/Oly-Fun-Fabric/p/MP29918</u>).

The single layer of Oly-Fun fabric has a typical efficiency of 15% while two layers of Oly-fun fabric has a typical efficiency of 30%.

Testing Procedure:

4C Air conducted a standard filtration efficiency test used in NIOSH N95, 42 CFR Part 84 (Respiratory Protective Devices). Tests were conducted on an "Automated Filter Tester" 8130A (TSI, Inc.) using 0.26 μ m (mass mean diameter) NaCl as the aerosol source under a flow rate of 85 L/min.

6 FFRs were tested before any treatments were performed. 3 FFRs were tested after the triboelectric charging and 3 FFRs were treated after the hot gas charging.

Materials Science & Engineering

Testing Data:

Initial							
Sample #	Efficiency (%)	Pressure drop (Pa)					
1	49.72	88.00					
2	43.66	73.00					
3	44.02	89.00					
4	46.54	85.00					
5	47.29	88.00					
6	43.66	95.00					
	After triboelectri	c charging					
	Efficiency (%)	Pressure drop (Pa)					
1	52.18	87.00					
2	51.65	85.00					
3	49.24	95.00					
20 r	ninutes resting after tri	boelectric charging					
1	47.22	86.00					
2	45.46	82.00					
3	45.36	92.00					
After hot gas charging							
4	48.30	93.00					
5	45.37	98.00					
6	42.16	97.00					

Fabric selection

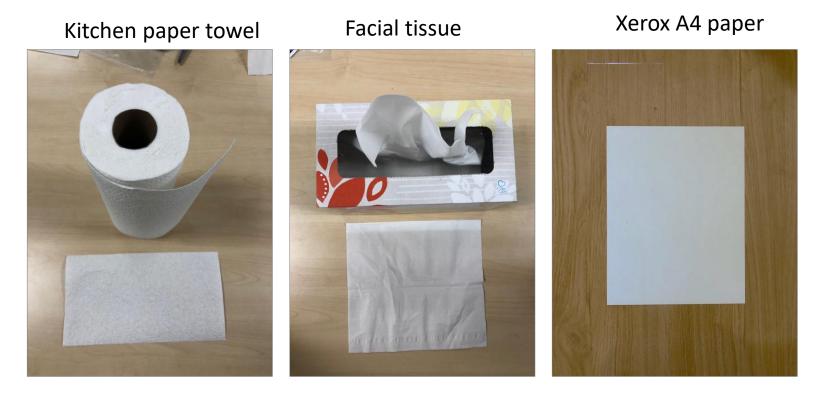
Commonly found cloths

Stanford ENGINEERING Materials Science & Engineering

- Commonly used fabric types were selected
- Among them: cotton, rayon, and silk are organic, the rest are synthetic fabrics

- Tested with Automated Filter Tester 8130A, TSI, Inc.
- Flow rate of 32 L/min
- 0.26 µm (mass median diameter) NaCl aerosol

(Yi Cui et. al. unpublished results)


7

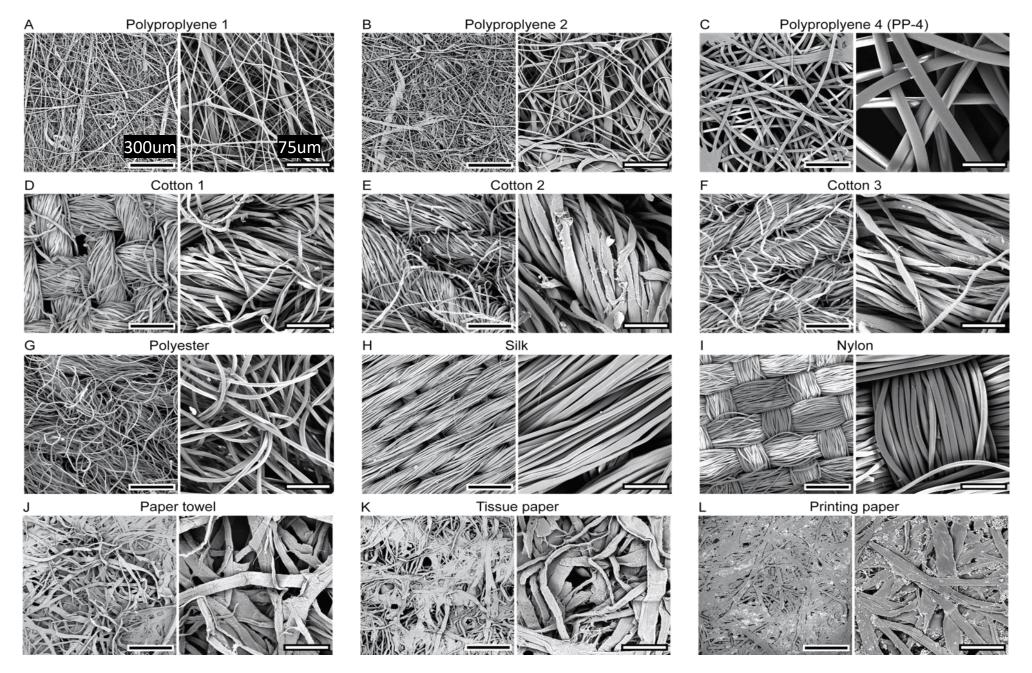
Cellulose products

Commonly found paper or sanitary products

- Tested with Automated Filter Tester 8130A, TSI, Inc.
- Flow rate of 32 L/min
- 0.26 µm (mass median diameter) NaCl aerosol

Material selection

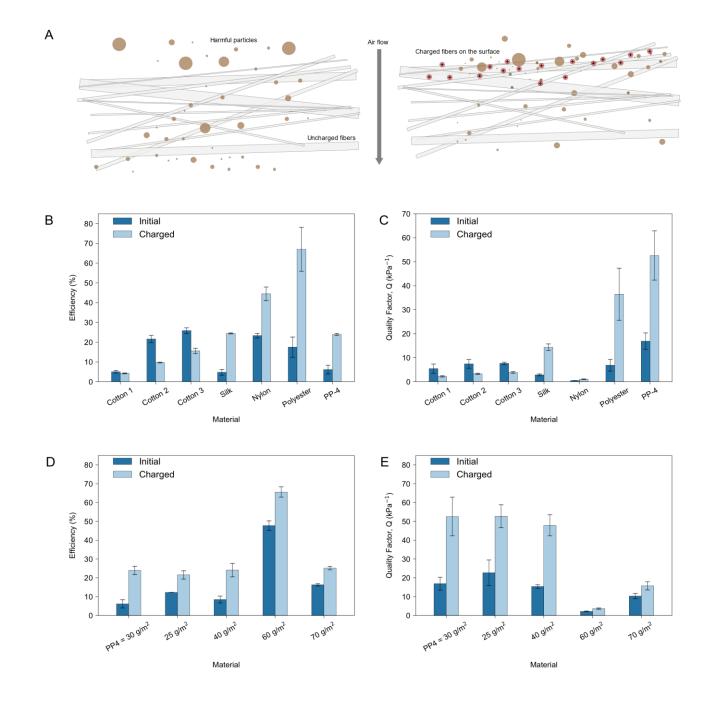
Summary of initial and charged filtration efficiencies


Stanford ENGINEERING Materials Science & Engineering

 $Q = -\frac{\log\left(1 - \frac{E}{100}\right)}{AB}$

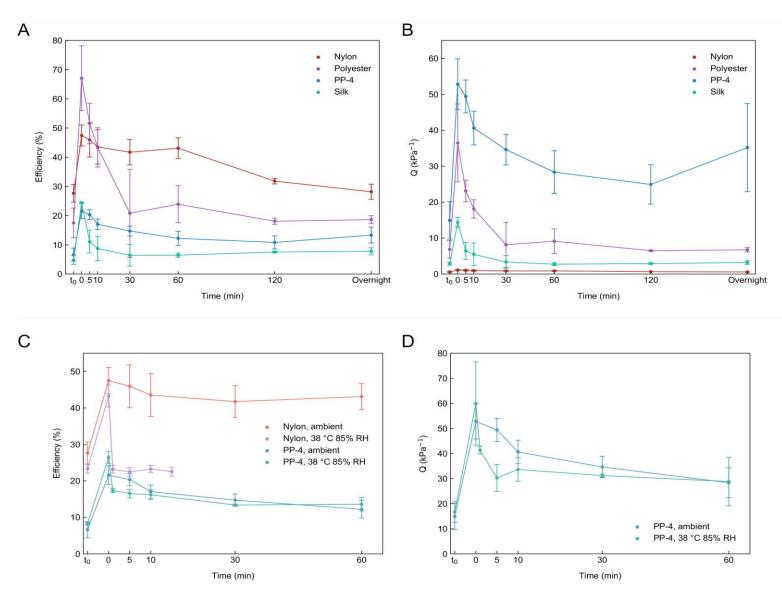
Material	Source	Structure	Basis weight (g/m²)	Initial Efficiency (%)	Initial Pressure drop (Pa)	Filter quality factor, Q (kPa ⁻¹)			
Personal Protection Materials									
Polypropylene 1	Particulate FFR	Meltblown (nonwoven)	25	95.94 ± 2	9.0 ± 2.0	162.7 ± 21.3			
Polypropylene 2	Surgical mask	Meltblown (nonwoven)	26	33.06 ± 0.95	34.3 ± 0.5	5 ± 0.1			
Polypropylene 3	Surgical mask	Meltblown (nonwoven)	20	18.81 ± 0.5	16.3 ± 0.5	5.5 ± 0.1			
	Household Materials								
Polypropylene 4 (PP-4)	Spunbond	Spunbond Nonwoven		6.15 ± 2.18	1.6 ± 0.5	16.9 ± 3.4			
Cotton 1 ⁺	Clothing	Woven	116	5.04 ± 0.64	4.5 ± 2.1	5.4 ± 1.9			
Cotton 2 ⁺	Clothing	Knit	157	21.62 ± 1.84	14.5 ± 2.1	7.4 ± 1.7			
Cotton 3 ⁺	Clothing	Knit	360	25.88 ± 1.41	17 ± 0.0	7.6 ± 0.4			
Polyester	Clothing	Knit	200	17.5 ± 5.1	12.3 ± 0.5	6.8 ± 2.4			
Silk	Napkin	Knit	84	4.77 ± 1.47	7.3 ± 1.5	2.8 ± 0.4			
Nylon	Clothing	Woven	164	23.33 ± 1.18	244 ± 5.5	0.4 ± 0			
Cellulose	Kitchen towel	Bonded	42.9	10.41 ± 0.28	11 ± 0.0	4.3 ± 2.8			
Cellulose	Facial tissue	Bonded	32.8	20.2 ± 0.32	19 ± 1	5.1 ± 3.2			
Cellulose	Copy paper	Bonded	72.8	99.85 ± 0.02	1883.6 ± 39.3	1.5 ± 0.2			

26 May 2020


Triboelectric charging

Method and observations

- Samples under friction produce static (triboelectricity)
- Clear observation of attractive force
- Samples are tested immediately after 10 seconds of "charging"
- Samples are further tested after resting to test decay



Stanford ENGINEERING

Materials Science & Engineering

Humidity Dependence of Static Charge

Summary and ranking of materials tested here based on Q, with relevant comments for each material.

~Q (kPa ⁻¹)	~Efficiency (%)	Material	Comments
>100	>95	Polypropylene meltblown (charged)	Material found in FFRs (used for reference)
30	10-20	Charged polypropylene (PP-4)	Charged value after overnight, polypropylene spunbonds can vary (different basis weight has different efficiency) but some charging all increases the spunbonds tested here and has low pressure
15	5-10	Uncharged polypropylene (PP-4)	Initial polypropylene spunbonds can vary in efficiency, but most tested had low pressure drops
5-10	20	Cotton	Knit and woven can vary in initial pressure drop, select cotton without any visible pores under light illumination or use multilayers
5-10	20	Polyester	Similar to cotton
5	30	Polypropylene meltblown (uncharged)	Material found in surgical masks (used for reference)
5	10-20	Facial tissue, paper or kitchen towel	Low mechanical strength, but may be possible to integrate into some masks with other cloths as a composite material
<5	5	Silk	If cotton and/or polyester are unavailable, otherwise the same comments as cotton
<1	20	Nylon (woven)	The nylon tested were had very high pressure drop, if using nylon for facial masks the nylon needs to have a lower pressure drop to be effective

Fabrics from Africa (from Prof. May Chu)

Left: T-Shirt bought in Kenya 2008; Middle: Sierra Leone West Africa Women's Coopertive; Right: Traditional Kenya Wedding

Sample #	Efficiency (%)	Pressure drop (Pa)	~Q (kPa⁻¹)
T-Shirt Kenya	15.06	24	2.9
West Africa	8.84	17	2.4
Kenya Wedding	7.21	7	4.5

Disinfection of N-95 level masks

Mask Standards

Mask Type	Single-use medical face mask	Surgical Mask	Protective face mask for medical use			
Standards	YY/T 0969-2013	YY 0469-2011	GB19083-2010			
Particle size	3µm bacteria aerosol	3µm bacteria aerosol 0.3µm NaCl aerosol	0.3µm NaCl aerosol			
Filtration efficiency particle filtration efficiency (PFE) Bacteria filtation efficiency (BFE)	BFE≥95%	BFE≥95% PFE≥30%	PFE≥95% (I) PFE≥99% (II) PFE≥99.97% (III)			
Liquid blocking	中層:作為屏障阻擋病菌	≥120 外層:防液體飛纜				
			And Conference for and the second for an an an and the second for an			
Single-use medical face	内層:吸收佩裏	2者釋出的濕氣和水分。 P	rotective face mask for medical			

Single-use medical face mask

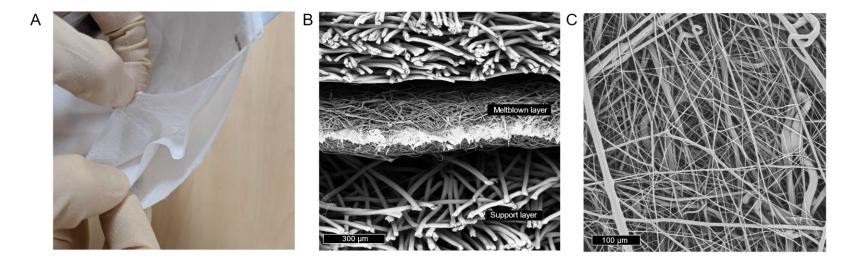
Surgical mask

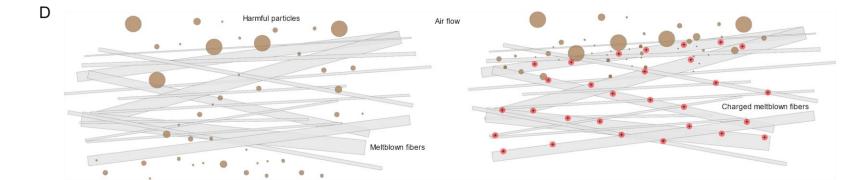
Protective face mask for medical use

Mask Standards

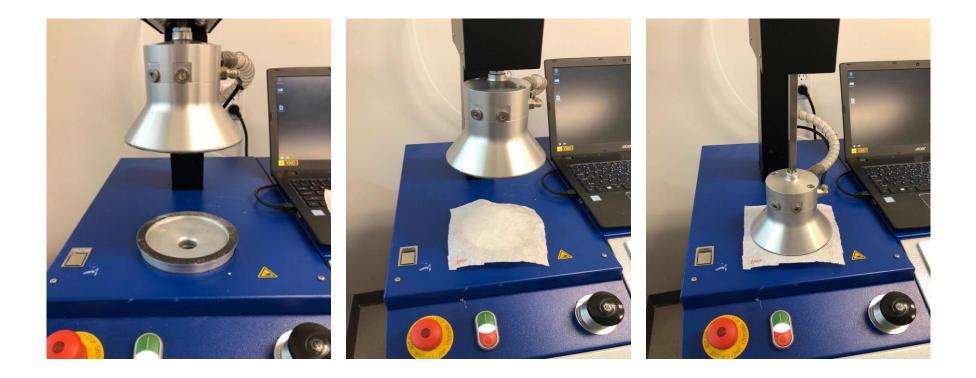
Mask types	Protective face mask for medical use	Industrial Protective Mask	Daily Protective masks		
Standards	GB 19083-2010	GB 2626-2019	GB/T 32610-2016		
Particle size	0.3µm NaCl aerosol (mass median size)	0.3µm NaCl aerosol	0.3µm NaCl aerosol		
Filtration efficiency					
Particle filtration efficiency (PFE)	PFE≥95% (I) PFE≥99% (II)	PFE≥90% PFE≥95%	PFE≥90% (III) PFE≥95% (II)		
Bacteria filtation efficiency (BFE))	PFE≥99.97% (III)	PFE≥99.97%	PFE≥99% (I)		
Liquid blocking capability, mmHg	80	/	/		

Filtration materials in ACSNANO


www.acsnano.org

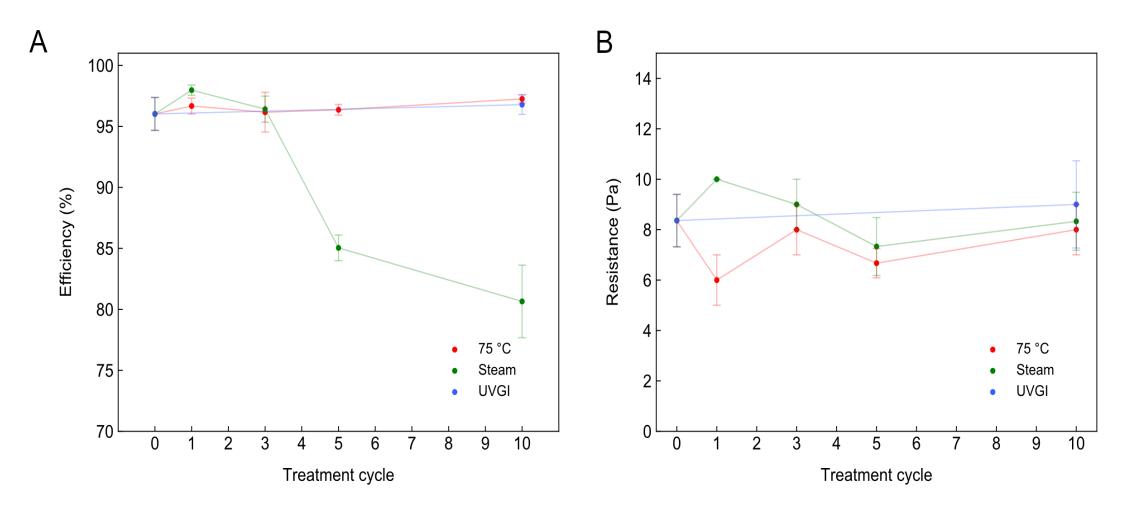

Can N95 Respirators Be Reused after Disinfection? How Many Times?

Lei Liao, Wang Xiao, Mervin Zhao, Xuanze Yu, Haotian Wang, Qiqi Wang, Steven Chu, and Yi Cui*

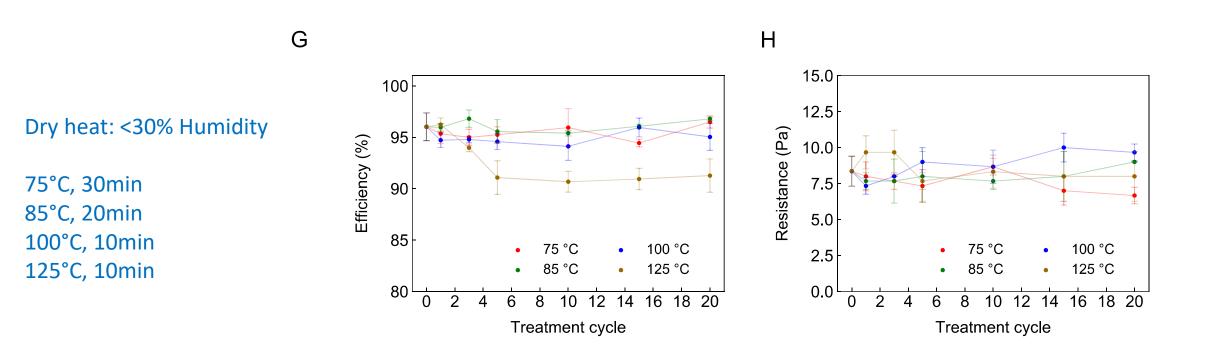

Cite This: https://dx.doi.org/10.1021/acsnano.0c03597

Similar as the NIOSH-testing condition TSI 8130A, 0.26um NaCl particles (mean mass diameter), Fabric level: 32 L/min flow Mask level: 85 L/min flow

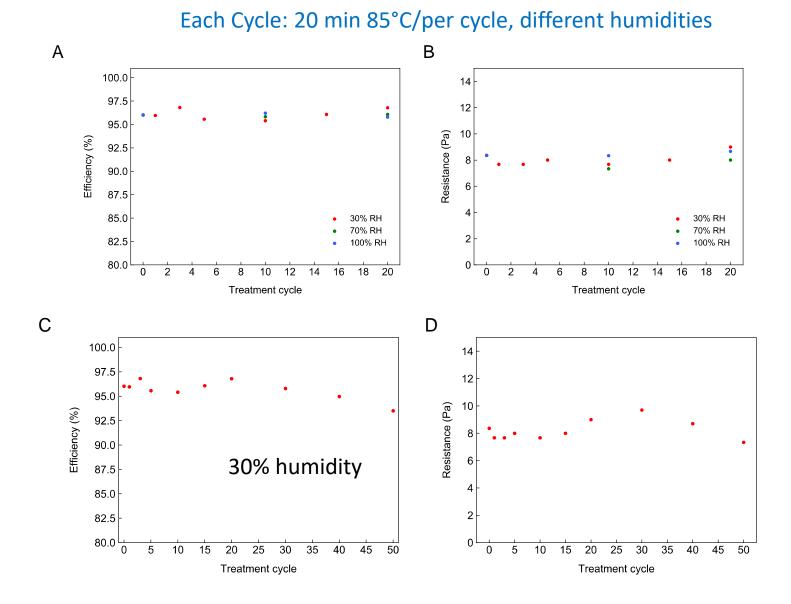
N95 Meltblown Fabric Disinfection


TSI 8130A, 0.26um NaCl particles, 32 L/min flow

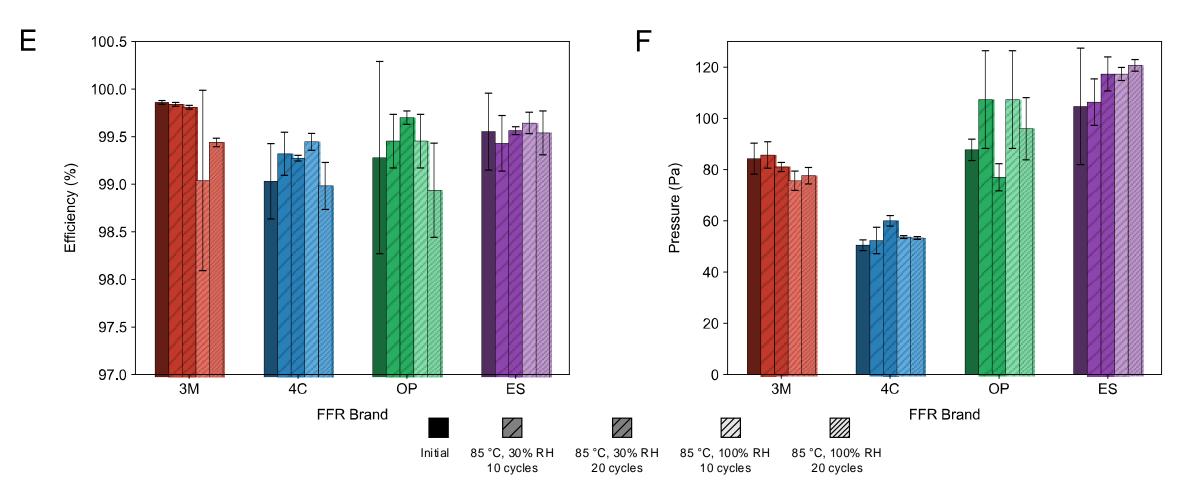
	Meltblown filtratior		Static-charg	E. Coli.		
Samples	Filtration efficiency (%)	Pressure drop (Pa)	Filtration efficiency (%)	Pressure drop (Pa)	Disinfection Efficiency	
70°C hot air in oven, 30min	. ,	8.00	70.16	4.67	>99%	
UV light, 30min	95.50	7.00	77.72	6.00	>99%	
75% alcohol, soaking and drying	56.33	7.67	29.24	5.33	>99%	
Chlorine-based disinfection, 5min	73.11	9.00	57.33	7.00	>99%	
Hot water vapor from boiling water, 10min	94.74	8.00	77.65	7.00	>99%	
nobe force at comples	96.76 d or Chlorin	8.33 e-related	78.01 chemicals f	5.33 or mask d	isinfection sir	
they will reduce the static charge in meltblown micron fibers and cottons, and thus						
<u>educe the filtration e</u>	efficiency.					


Materials Science & Engineering

https://dx.doi.org/10.1021/acsnano.0c03597



N95 Meltblown Fabric Disinfecting Cy Stanford ENGINEERING

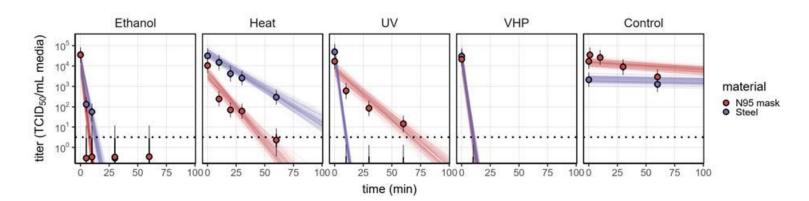

N95 Mask Disinfecting Cycling

Materials Science & Engineering

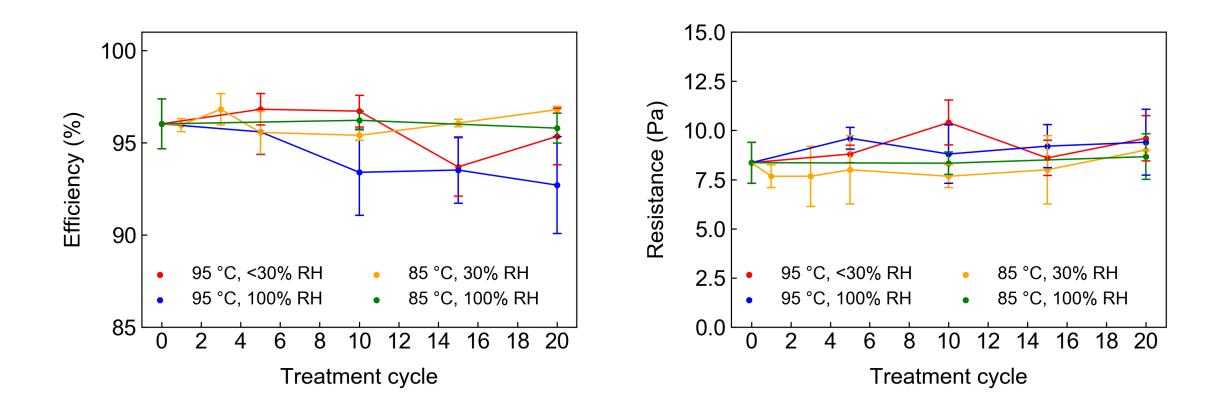
Heat (dry, humid) on COVID-19 Disinfection

https://www.medrxiv.org/content/10.1101/2020.03.15.20036673v2.full.pdf+html

Table. Stability of SARS-CoV-2 at different environmental conditions.


70°C in solution, 5min, Complete Disinfection

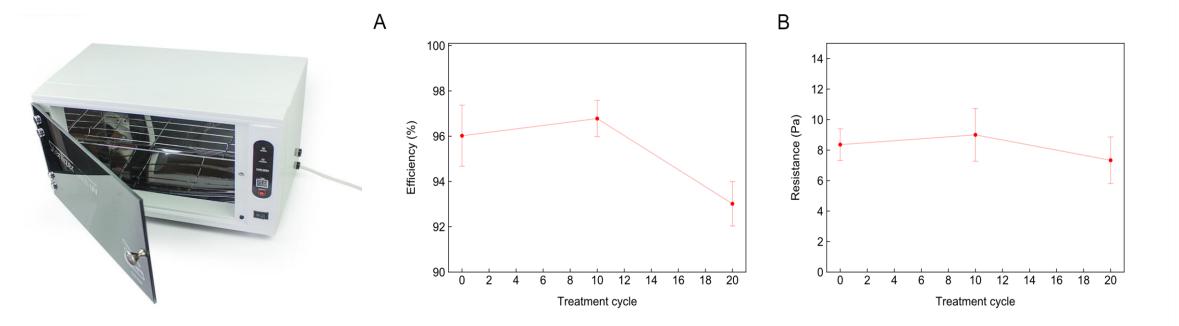
	Virus titre (Log TCID ₅₀ /mL)										
Time	4°	4°C		22°C		37°C		56°C		70°C	
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD	
1 min	N.D.	N.D.	6.51	0.27	N.D.	N.D.	6.65	0.1	5.34	0.17	
5 mins	N.D.	N.D.	6.7	0.15	N.D.	N.D.	4.62	0.44	U	-	
10 mins	N.D.	N.D.	6.63	0.07	N.D.	N.D.	3.84	0.32	U	-	
30 mins	6.51	0.27	6.52	0.28	6.57	0.17	U	-	U	-	
1 hr	6.57	0.32	6.33	0.21	6.76	0.05	U	-	U	-	
3 hrs	6.66	0.16	6.68	0.46	6.36	0.19	U	-	U	-	
6 hrs	6.67	0.04	6.54	0.32	5.99	0.26	U	-	U	-	
12 hrs	6.58	0.21	6.23	0.05	5.28	0.23	U	-	U	-	
1 day	6.72	0.13	6.26	0.05	3.23	0.05	U	-	U	-	
2 days	6.42	0.37	5.83	0.28	U	-	U	-	U	-	
4 days	6.32	0.27	4.99	0.18	U	-	U	-	U	-	
7 days	6.65	0.05	3.48	0.24	U	-	U	-	U	-	
14 dáys	6.04	0.18	U	-	U	-	U	-	U	-	


A) Temperature*

https://www.medrxiv.org/content/10.1101/2020.04.11.20062018v1

70°C Dry Heat, 60min, Complete Disinfection

Heat Under Different Humidity on N95 Meltblown Fabric



Summary of Heating Methods

Dry heat below 100C is safe for N95 Meltblown Fabric

Humid heat below 95C (<100C) is safe for N95 Meltblown Fabric

Stanford ENGINEERING

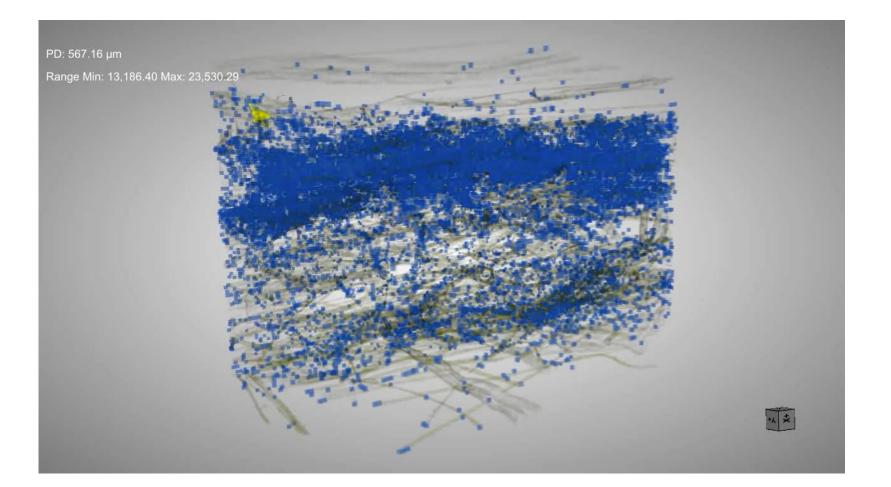
Materials Science & Engineering

UV Testing, 254nm, 8W light bulb

Notes on the UV-C methods:

- Penetration; The shadow effects of 3D porous structures 1)
- UV illumination uniformity issue 2)
- UV Dose measurement 3)
- UV degradation of PP fibers and elastic straps. 4)

Implementing the UV-C method requires good engineering control, probably more suitable for industry scale disinfection.

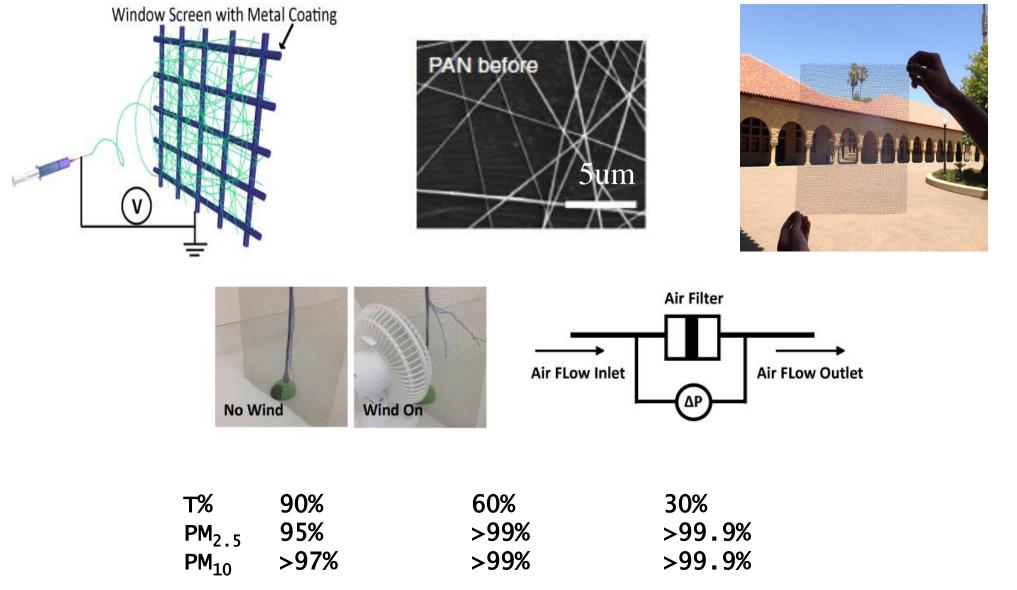

Notes on other disinfection methods

- 1) Ethylene oxide: toxic, needs to release the residue (need to good engineering control, Industry scale)
- 2) Vaporized hydrogen peroxide: cautious about the toxic byproduct, needs to release the residue (need to good engineering control, Industry scale)
- 3) ClO₂: cautious about toxic by product, etching straps, needs to release the residue (need to good engineering control, Industry scale)
- 4) Ozone: cautious about toxic by product, needs to release the residue (need to good engineering control, Industry scale)

NaCl particle distribution inside N95 Meltblown fabric

Stanford ENGINEERING

Materials Science & Engineering

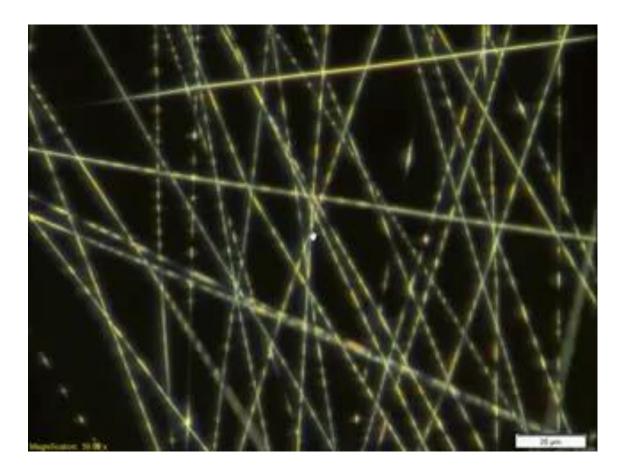


X-Ray CT

4CAir

Hye Ryoung Lee, Yi Cui et. al. unpublished results

Polymer Nanofibers for Future Tech Stanford ENGINEERING Materials Science & Engineering



Yi Cui lab, *Nature Communications* volume 6, Article number: 6205 (2015).

Polymer Nanofibers for Future Technology ENGINEERING Materials Science & Engineering

In-situ PM2.5 Capture

Yi Cui lab, *Nature Communications* volume 6, Article number: 6205 (2015).

Summary

Homemade Masks

1. Polypropylene (charged and uncharged)

2. Cotton

- 3. Polyester
- 4. Facial tissue
- 5. Silk

Disinfection of N-95 level Masks

 Dry heat below 100C is safe for N95 Meltblown Fabric

2. Humid heat below 95C (<100C) is safe for N95 Meltblown Fabric

Future Directions

Develop easy criteria for layman to pick the fabric

- Eye inspection (no visible holes)
- Thread counts
- Breathing try

Thank you!

Collaborators: Stanford: Prof. Steven Chu, Prof Larry Chu, Prof. Wah Chiu, Dr. Amy Price

4C Air Team: Dr. Lei Liao, Mervin Zhao and others

The DeMaND Team: Prof. May Chu (Colorado), Selcen Kilinc-Balci (CDC/NIOSH), Brian H. Harcourt (CDC) Ying Ling Lin (WHO) and many others